Phương pháp: Để chứng minh phương trình có nghiệm bằng cách sử dụng tính liên tục của hàm số, ta thực hiện theo các bước sau: + Bước 1: Biến đổi phương trình về dạng $f\left( x \right) = 0.$ + Bước 2: Tìm hai số $a$ và $b$ $(a<b)$ sao cho $f\left( a \right).f\left( b \right) < 0.$ + Bước 3: Chứng minh hàm số $f(x)$ liên tục trên đoạn $\left[ {a;b} \right].$ Từ đó suy ra phương trình $f\left( x \right) = 0$ có ít nhất một nghiệm thuộc $\left( {a;b} \right).$ Chú ý: + Nếu $f\left( a \right).f\left( b \right) \le 0$ thì phương trình có ít nhất một nghiệm thuộc $\left[ {a;b} \right].$ + Nếu hàm số $f(x)$ liên tục trên $\left[ {a; + \infty } \right)$ và có $f\left( a \right).\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) < 0$ thì phương trình $f\left( x \right) = 0$ có ít nhất một nghiệm thuộc $\left( {a; + \infty } \right).$ + Nếu hàm số $f(x)$ liên tục trên $\left( { – \infty ;a} \right]$ và có $f\left( a \right).\mathop {\lim }\limits_{x \to – \infty } f\left( x \right) < 0$ thì phương trình $f\left( x \right) = 0$ có ít nhất một nghiệm thuộc $\left( { – \infty ;a} \right).$ Ví dụ 1: Chứng minh rằng phương trình $4{x^3} – 8{x^2} + 1 = 0$ có nghiệm trong khoảng $\left( { – 1;2} \right).$ Hàm số $f\left( x \right) = 4{x^3} – 8{x^2} + 1$ liên tục trên $R.$ Ta có: $f\left( { – 1} \right) = – 11$, $f\left( 2 \right) = 1$ nên $f\left( { – 1} \right).f\left( 2 \right) < 0.$ Do đó theo tính chất hàm số liên tục, phương trình đã cho có ít nhất một nghiệm thuộc khoảng $\left( { – 1;2} \right).$ Ví dụ 2: Chứng minh phương trình $4{x^4} + 2{x^2} – x – 3 = 0$ có ít nhất $2$ nghiệm thuộc khoảng $\left( { – 1;1} \right).$ Đặt $f\left( x \right) = 4{x^4} + 2{x^2} – x – 3$ thì $f\left( x \right)$ liên tục trên $R.$ Ta có: $f\left( { – 1} \right) = 4 + 2 + 1 – 3 = 4.$ $f\left( 0 \right) = – 3.$ $f\left( 1 \right) = 2.$ Vì $f\left( { – 1} \right).f\left( 0 \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( { – 1;0} \right).$ Vì $f\left( 1 \right).f\left( 0 \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( {0;1} \right).$ Mà hai khoảng $\left( { – 1;0} \right)$, $\left( {0;1} \right)$ không giao nhau. Từ đó suy ra phương trình đã cho có ít nhất $2$ nghiệm thuộc khoảng $\left( { – 1;1} \right).$ Ví dụ 3: Chứng minh phương trình ${x^5} – 5{x^3} + 4x – 1 = 0$ có đúng năm nghiệm. Đặt $f\left( x \right) = {x^5} – 5{x^3} + 4x – 1$ thì $f\left( x \right)$ liên tục trên $R.$ Ta có $f\left( x \right) = x\left( {{x^4} – 5{x^2} + 4} \right) – 1$ $ = \left( {x – 2} \right)\left( {x – 1} \right)x\left( {x + 1} \right)\left( {x + 2} \right) – 1.$ $f\left( { – 2} \right) = – 1.$ $f\left( { – \frac{3}{2}} \right) = \frac{{105}}{{32}} – 1 > 0.$ $f\left( { – 1} \right) = – 1 < 0.$ $f\left( {\frac{1}{2}} \right) = \frac{{45}}{{32}} – 1 > 0.$ $f\left( 1 \right) = – 1 < 0.$ $f\left( 3 \right) = 120 – 1 = 119 > 0.$ Vì $f\left( { – 2} \right).f\left( { – \frac{3}{2}} \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( { – 2; – \frac{3}{2}} \right).$ Vì $f\left( { – \frac{3}{2}} \right).f\left( { – 1} \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( { – \frac{3}{2}; – 1} \right).$ Vì $f\left( { – 1} \right).f\left( {\frac{1}{2}} \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( { – 1;\frac{1}{2}} \right).$ Vì $f\left( {\frac{1}{2}} \right).f\left( 1 \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( {\frac{1}{2};1} \right).$ Vì $f\left( 1 \right).f\left( 3 \right) < 0$ nên phương trình có nghiệm thuộc khoảng $\left( {1;3} \right).$ Do các khoảng $\left( { – 2; – \frac{3}{2}} \right)$, $\left( { – \frac{3}{2}; – 1} \right)$, $\left( { – 1;\frac{1}{2}} \right)$, $\left( {\frac{1}{2};1} \right)$, $\left( {1;3} \right)$ không giao nhau nên phương trình có ít nhất $5$ nghiệm. Mà phương trình bậc $5$ có không quá $5$ nghiệm suy ra phương trình đã cho có đúng $5$ nghiệm. Ví dụ 4: Chứng minh rằng nếu $2a + 3b + 6c = 0$ thì phương trình $a{\tan ^2}x + b\tan x + c = 0$ có ít nhất một nghiệm thuộc khoảng $\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$, $k \in Z.$ Đặt $t = \tan x$, vì $x \in \left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$ nên $t \in \left( {0;1} \right)$, phương trình đã cho trở thành: $a{t^2} + bt + c = 0$ $\left( * \right)$ với $t \in \left( {0;1} \right).$ Đặt $f\left( t \right) = a{t^2} + bt + c$ thì $f\left( t \right)$ liên tục trên $R.$ Ta sẽ chứng minh phương trình $\left( * \right)$ luôn có nghiệm $t \in \left( {0;1} \right).$ • Cách 1: Ta có: $f\left( 0 \right).f\left( {\frac{2}{3}} \right)$ $ = \frac{c}{9}\left( {4a + 6b + 9c} \right)$ $ = \frac{c}{9}\left[ {2\left( {2a + 3b + 6c} \right) – 3c} \right]$ $ = – \frac{{{c^2}}}{3}.$ + Nếu $c = 0$ thì $f\left( {\frac{2}{3}} \right) = 0$ do đó phương trình $\left( * \right)$ có nghiệm $t = \frac{2}{3} \in \left( {0;1} \right).$ + Nếu $c \ne 0$ thì $f\left( 0 \right).f\left( {\frac{2}{3}} \right) < 0$ suy ra phương trình $\left( * \right)$ có nghiệm $t \in \left( {0;\frac{2}{3}\pi } \right)$, do đó phương trình $\left( * \right)$ có nghiệm $t \in \left( {0;1} \right).$ Vậy phương trình $a{\tan ^2}x + b\tan x + c = 0$ có ít nhất một nghiệm thuộc khoảng $\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$, $k \in Z.$ • Cách 2: Ta có: $f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)$ $ = c + 4\left( {\frac{1}{4}a + \frac{1}{2}b + c} \right)$ $ + a + b + c$ $ = 2a + 3b + 6c = 0$ $\left( { * * } \right).$ + Nếu $a = 0$, từ giả thiết suy ra $3b + 6c = 0$, do đó phương trình $\left( * \right)$ có nghiệm $t = \frac{1}{2} \in \left( {0;1} \right).$ + Nếu $a \ne 0$ thì $f\left( 0 \right)$, $f\left( {\frac{1}{2}} \right)$, $f\left( 1 \right)$ không thể đồng thời bằng $0$ (vì phương trình bậc hai không có quá hai nghiệm). Khi đó, từ $\left( { * * } \right)$ suy ra trong ba số $f\left( 0 \right)$, $f\left( {\frac{1}{2}} \right)$, $f\left( 1 \right)$ phải có hai giá trị trái dấu nhau (Vì nếu cả ba giá trị đó cùng âm hoặc cùng dương thì tổng của chúng không thể bằng $0$). Mà hai giá trị nào trong chúng trái dấu thì theo tính chất hàm liên tục ta đều suy ra phương trình $\left( * \right)$ có ít nhất một nghiệm $t \in \left( {0;1} \right).$ Vậy phương trình $a{\tan ^2}x + b\tan x + c = 0$ có ít nhất một nghiệm thuộc khoảng $\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$, $k \in Z.$ Ví dụ 5: Cho hàm số $y = f(x) = {x^3} – \frac{3}{2}{m^2}{x^2} + 32$ (với $m$ là tham số). Chứng minh rằng với $m < – 2$ hoặc $m > 2$ thì phương trình $f(x)=0$ có đúng ba nghiệm phân biệt ${x_1}$, ${x_2}$, ${x_3}$ và thỏa điều kiện ${x_1} < 0 < {x_2} < {x_3}.$ Ta có: $f(0) = 32$, $f\left( {{m^2}} \right) = \frac{1}{2}\left( {64 – {m^6}} \right)$, khi $m < – 2$ hoặc $m > 2$ thì $\frac{1}{2}\left( {64 – {m^6}} \right) < 0$ và ${m^2} > 0.$ Mà: $\mathop {\lim }\limits_{x \to – \infty } f\left( x \right)$ $ = \mathop {\lim }\limits_{x \to – \infty } \left( {{x^3} – \frac{3}{2}{m^2}{x^2} + 32} \right) = – \infty $ $ \Rightarrow \exists \alpha < 0$ sao cho $f\left( \alpha \right) < 0.$ $\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)$ $ = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} – \frac{3}{2}{m^2}{x^2} + 32} \right) = + \infty $ $ \Rightarrow \exists \beta > {m^2}$ sao cho $f\left( \beta \right) > 0.$ Do đó ta có $\left\{ \begin{array}{l} f\left( \alpha \right).f\left( 0 \right) < 0\\ f\left( 0 \right).f\left( {{m^2}} \right) < 0\\ f\left( {{m^2}} \right).f\left( \beta \right) < 0 \end{array} \right. .$ Vì hàm số $f(x)$ xác định và liên tục trên $R$ nên liên tục trên các đoạn $\left[ {\alpha ;0} \right]$, $\left[ {0;{m^2}} \right]$, $\left[ {{m^2};\beta } \right]$ nên phương trình $f(x)=0$ có ít nhất ba nghiệm lần lượt thuộc các khoảng $\left( {\alpha ;0} \right)$, $\left( {0;{m^2}} \right)$, $\left( {{m^2};\beta } \right).$ Vì $f(x)$ là hàm bậc ba nên nhiều nhất chỉ có ba nghiệm. Vậy với $m < – 2$ hoặc $m > 2$ thì phương trình $f(x)={x^3} – \frac{3}{2}{m^2}{x^2} + 32=0$ có đúng ba nghiệm phân biệt ${x_1}$, ${x_2}$, ${x_3}$ thỏa mãn điều kiện ${x_1} < 0 < {x_2} < {x_3}.$ Ví dụ 6: Chứng minh rằng phương trình $\left( {{m^2} – m + 3} \right){x^{2n}} – 2x – 4 = 0$ với $n \in {N^*}$ luôn có ít nhất một nghiệm âm với mọi giá trị của tham số m. Đặt $f\left( x \right) = \left( {{m^2} – m + 3} \right){x^{2n}} – 2x – 4.$ Ta có: $f\left( { – 2} \right)$ $ = \left( {{m^2} – m + 3} \right){\left( { – 2} \right)^{2n}} – 2\left( { – 2} \right) – 4$ $ = \left( {{m^2} – m + 3} \right){2^{2n}} > 0$, $\forall m \in R.$ $f\left( 0 \right) = – 4 < 0$, $\forall m \in R.$ Từ đó có: $f\left( { – 2} \right).f\left( 0 \right) < 0$, $\forall m \in R.$ Ngoài ra hàm số $f(x)$ xác định và liên tục trên $R$ nên hàm số liên tục trên đoạn $\left[ { – 2;0} \right].$ Vậy phương trình $f(x) = 0$ luôn có ít nhất một nghiệm âm với mọi giá trị tham số $m.$