Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Dạng 7. Phương trình bậc bốn tổng quát $a{x^4} + b{x^3} + c{x^2} + dx + e = 0.$

Thảo luận trong 'Bài 01. Phương trình' bắt đầu bởi Tăng Giáp, 7/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,630
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    Phân tích các hạng tử bậc $4$, $3$, $2$ thành bình phương đúng, các hạng tử còn lại chuyển sang về phải: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0$ $ \Leftrightarrow 4{a^2}{x^4} + 4ba{x^3} + 4ca{x^2} + 4dax + 4ae = 0$ $ \Leftrightarrow {\left( {2a{x^2} + bx} \right)^2}$ $ = \left( {{b^2} – 4ac} \right){x^2} – 4adx – 4ae.$
    Thêm vào hai vế một biểu thức $2\left( {2a{x^2} + bx} \right)y + {y^2}$ ($y$ là hằng số) để về trái thành bình phương đúng, còn vế phải là tam thức bậc hai theo $x$: $f\left( x \right) = \left( {{b^2} – 4ac – 4ay} \right){x^2}$ $ + 2\left( {by – 2ad} \right)x – 4ae + {y^2}.$
    Tính $y$ sao cho vế phải là một bình phương đúng, khi đó $Δ$ của vế phải bằng $0$, như vậy ta phải giải phương trình $Δ= 0$, từ đó ta có dạng phương trình $A^2=B^2$ quen thuộc.

    Ví dụ 7. Giải phương trình: ${x^4} – 16{x^3} + 66{x^2} – 16x – 55 = 0.$

    Ta có: ${x^4} – 16{x^3} + 66{x^2} – 16x – 55 = 0$ $ \Leftrightarrow {x^4} – 16{x^3} + 64{x^2}$ $ = – 2{x^2} + 16x + 55$ $ \Leftrightarrow {\left( {{x^2} – 8x} \right)^2} + 2y\left( {{x^2} – 8x} \right) + {y^2}$ $ = \left( {2y – 2} \right){x^2} + \left( {16 – 16y} \right)x + 55 + {y^2}.$
    Giải phương trình $\Delta = 0$ $ \Leftrightarrow {\left( {8 – 8y} \right)^2} – \left( {55 + {y^2}} \right)\left( {2y – 2} \right) = 0$ tìm được $y=1$, $y= 3$, $y=29.$
    Trong các giá trị này, ta thấy giá trị $y=3$ là thuận lợi nhất cho việc tính toán.
    Như vậy chọn $y=3$, ta có phương trình: ${\left( {{x^2} – 8x + 3} \right)^2} = 4{\left( {x – 4} \right)^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
    {x^2} – 8x + 3 = 2\left( {x – 4} \right)\\
    {x^2} – 8x + 3 = – 2\left( {x – 4} \right)
    \end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
    {x^2} – 10x + 11 = 0\\
    {x^2} – 6x – 5 = 0
    \end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
    x = 3 \pm \sqrt {14} \\
    x = 5 \pm \sqrt {14}
    \end{array} \right.$
    Vậy phương trình đã cho có tập nghiệm $S = \left\{ {3 + \sqrt {14} ;3 – \sqrt {14} ;5 + \sqrt {14} ;5 – \sqrt {14} } \right\}.$

    Nhận xét:
    Ví dụ trên cho ta thấy phương trình $Δ= 0$ có nhiều nghiệm, có thể chọn $y=1$ nhưng từ đó ta có phương trình ${\left( {{x^2} – 8x + 1} \right)^2} = 56$ thì không thuận lợi lắm cho việc tính toán, tuy nhiên, kết quả vẫn như nhau.
    Một cách giải khác là từ phương trình ${x^4} + a{x^3} + b{x^2} + cx + d = 0$, đặt $x = t – \frac{a}{4}$ ta sẽ thu được phương trình khuyết bậc ba theo $t$, nghĩa là bài toán quy về giải phương trình ${t^4} = a{t^2} + bt + c$ đã trình bày ở dạng 5.
     

Chia sẻ trang này