Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Dạng toán 1. Chứng minh tính chất của một cấp số nhân.

Thảo luận trong 'Chủ đề 3: Cấp số cộng và cấp số nhân' bắt đầu bởi moon, 5/12/18.

  1. moon

    moon Thành viên cấp 2 Thành viên BQT

    Tham gia ngày:
    2/10/14
    Bài viết:
    160
    Đã được thích:
    46
    Điểm thành tích:
    28
    Phương pháp: Với bài toán: Cho ba số $a, b, c$ lập thành cấp số nhân, chứng minh tính chất $K$, ta thực hiện theo các bước sau:
    + Bước 1. Từ giả thiết $a, b, c$ lập thành một cấp số nhân, ta được: $ac = {b^2}.$
    + Bước 2. Chứng minh tính chất $K.$


    Ví dụ 1. Cho ba số $a, b, c$ lập thành một cấp số nhân. Chứng minh rằng: $\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right)$ $ = {\left( {ab + bc} \right)^2}.$

    Từ giả thiết $a, b, c$ lập thành một cấp số nhân, ta được: $ac = {b^2}.$
    Khi đó: $\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right)$ $ = {a^2}{b^2} + {a^2}{c^2} + {b^4} + {b^2}{c^2}$ $ = {a^2}{b^2} + ac{b^2} + ac{b^2} + {b^2}{c^2}$ $ = {a^2}{b^2} + 2a{b^2}c + {b^2}{c^2}$ $ = {\left( {ab + bc} \right)^2}.$
    Vậy: $\left( {{a^2} + {b^2}} \right)\left( {{b^2} + {c^2}} \right)$ $ = {\left( {ab + bc} \right)^2}.$

    Ví dụ 2. Cho $\left( {{a_n}} \right)$ là một cấp số nhân. Chứng minh rằng: ${a_1}{a_n} = {a_k}{a_{n – k + 1}}$ với $k = 1, 2,…, n.$

    Ta có:
    $VT = {a_1}{a_n}$ $ = {a_1}{a_1}{q^{n – 1}} = a_1^2{q^{n – 1}}.$
    $VP = {a_k}{a_{n – k + 1}}$ $ = {a_1}{q^{k – 1}}{a_1}{q^{n – k}} = a_1^2{q^{n – 1}}.$
    Suy ra $VT = VP$, hay ${a_1}{a_n} = {a_k}{a_{n – k + 1}}$ với $k = 1, 2,…, n.$
     

Chia sẻ trang này