Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Dạng toán 1. Tìm giới hạn bằng định nghĩa.

Thảo luận trong 'Chủ đề 4. GIỚI HẠN' bắt đầu bởi moon, 5/12/18.

  1. moon

    moon Thành viên cấp 2 Thành viên BQT

    Tham gia ngày:
    2/10/14
    Bài viết:
    160
    Đã được thích:
    46
    Điểm thành tích:
    28
    Phương pháp:
    • Để chứng minh $\lim {u_n} = 0$ ta chứng minh với mọi số $a > 0$ nhỏ tùy ý luôn tồn tại một số ${n_a}$ sao cho $\left| {{u_n}} \right| < a$, $\forall n > {n_a}.$
    • Để chứng minh $\lim {u_n} = L$ ta chứng minh $\lim ({u_n} – L) = 0.$
    • Để chứng minh $\lim {u_n} = + \infty $ ta chứng minh với mọi số $M > 0$ lớn tùy ý, luôn tồn tại số tự nhiên ${n_M}$ sao cho ${u_n} > M$, $\forall n > {n_M}.$
    • Để chứng minh $\lim {u_n} = – \infty $ ta chứng minh $\lim ( – {u_n}) = + \infty .$
    • Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất.

    Ví dụ 1. Chứng minh rằng:
    1. $\lim \frac{{n + 2}}{{n + 1}} = 1.$
    2. $\lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.$
    3. $\lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.$

    1. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \frac{1}{a} – 1$, ta có:
    $\left| {\frac{{n + 2}}{{n + 1}} – 1} \right|$ $ = \frac{1}{{n + 1}} < \frac{1}{{{n_a} + 1}} < a$ với $\forall n > {n_a}.$
    Suy ra $\lim \left| {\frac{{n + 2}}{{n + 1}} – 1} \right| = 0$ $ \Rightarrow \lim \frac{{n + 2}}{{n + 1}} = 1.$
    2. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \sqrt {\frac{3}{a} – 1} $, ta có:
    $\left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right|$ $ = \frac{3}{{{n^2} + 1}}$ $ < \frac{3}{{n_a^2 + 1}} < a$ với $\forall n > {n_a}.$
    Suy ra $\lim \left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right| = 0$ $ \Rightarrow \lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.$
    3. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \sqrt {\frac{9}{{{a^2}}} – 1} $, ta có:
    $\left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right|$ $ = \left| {\frac{{1 – 2n + 2\sqrt {{n^2} + 1} }}{{\sqrt {{n^2} + 1} }}} \right|$ $ < \left| {\frac{{1 – 2n + 2(n + 1)}}{{\sqrt {{n^2} + 1} }}} \right|$ $ = \frac{3}{{\sqrt {{n^2} + 1} }}$ $ < \frac{3}{{\sqrt {n_a^2 + 1} }} < a$ với $\forall n > {n_a}.$
    Suy ra $\lim \left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right| = 0$ $ \Rightarrow \lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.$

    Ví dụ 2. Chứng minh rằng dãy số $({u_n}):{u_n} = {( – 1)^n}$ không có giới hạn.

    Ta có: ${u_{2n}} = 1$ $ \Rightarrow \lim {u_{2n}} = 1$; ${u_{2n + 1}} = – 1$ $ \Rightarrow \lim {u_{2n + 1}} = – 1.$
    Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy $\left( {{u_n}} \right)$ không có giới hạn.

    Ví dụ 3. Chứng minh các giới hạn sau:
    1. $\lim \frac{{{n^2} + 1}}{n} = + \infty .$
    2. $\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .$

    1. Với mọi số thực dương $M$ lớn tùy ý, ta có: $\left| {\frac{{{n^2} + 1}}{n}} \right| > M$ $ \Leftrightarrow {n^2} – Mn + 1 > 0$ $ \Leftrightarrow n > \frac{{M + \sqrt {{M^2} – 4} }}{2}.$
    Ta chọn ${n_0} = \left[ {\frac{{M + \sqrt {{M^2} – 4} }}{2}} \right]$ thì ta có: $\frac{{{n^2} + 1}}{n} > M$, $\forall n > {n_0}.$
    Do đó: $\lim \frac{{{n^2} + 1}}{n} = + \infty .$
    2. Với mọi $M > 0$ lớn tùy ý, ta có: $\frac{{n – 2}}{{\sqrt n }} > M$ $ \Leftrightarrow n – M\sqrt n – 2 > 0$ $ \Leftrightarrow n > {\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)^2}.$
    Ta chọn ${n_0} = \left[ {{{\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)}^2}} \right]$ thì ta có: $\frac{{n – 2}}{{\sqrt n }} > M$, $\forall n > {n_0}.$
    Do đó: $\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .$
     

Chia sẻ trang này