Phương pháp: • Để chứng minh $\lim {u_n} = 0$ ta chứng minh với mọi số $a > 0$ nhỏ tùy ý luôn tồn tại một số ${n_a}$ sao cho $\left| {{u_n}} \right| < a$, $\forall n > {n_a}.$ • Để chứng minh $\lim {u_n} = L$ ta chứng minh $\lim ({u_n} – L) = 0.$ • Để chứng minh $\lim {u_n} = + \infty $ ta chứng minh với mọi số $M > 0$ lớn tùy ý, luôn tồn tại số tự nhiên ${n_M}$ sao cho ${u_n} > M$, $\forall n > {n_M}.$ • Để chứng minh $\lim {u_n} = – \infty $ ta chứng minh $\lim ( – {u_n}) = + \infty .$ • Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Ví dụ 1. Chứng minh rằng: 1. $\lim \frac{{n + 2}}{{n + 1}} = 1.$ 2. $\lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.$ 3. $\lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.$ 1. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \frac{1}{a} – 1$, ta có: $\left| {\frac{{n + 2}}{{n + 1}} – 1} \right|$ $ = \frac{1}{{n + 1}} < \frac{1}{{{n_a} + 1}} < a$ với $\forall n > {n_a}.$ Suy ra $\lim \left| {\frac{{n + 2}}{{n + 1}} – 1} \right| = 0$ $ \Rightarrow \lim \frac{{n + 2}}{{n + 1}} = 1.$ 2. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \sqrt {\frac{3}{a} – 1} $, ta có: $\left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right|$ $ = \frac{3}{{{n^2} + 1}}$ $ < \frac{3}{{n_a^2 + 1}} < a$ với $\forall n > {n_a}.$ Suy ra $\lim \left| {\frac{{{n^2} – 1}}{{2{n^2} + 1}} – \frac{1}{2}} \right| = 0$ $ \Rightarrow \lim \frac{{{n^2} – 1}}{{2{n^2} + 1}} = \frac{1}{2}.$ 3. Với $a > 0$ nhỏ tùy ý, ta chọn ${n_a} > \sqrt {\frac{9}{{{a^2}}} – 1} $, ta có: $\left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right|$ $ = \left| {\frac{{1 – 2n + 2\sqrt {{n^2} + 1} }}{{\sqrt {{n^2} + 1} }}} \right|$ $ < \left| {\frac{{1 – 2n + 2(n + 1)}}{{\sqrt {{n^2} + 1} }}} \right|$ $ = \frac{3}{{\sqrt {{n^2} + 1} }}$ $ < \frac{3}{{\sqrt {n_a^2 + 1} }} < a$ với $\forall n > {n_a}.$ Suy ra $\lim \left| {\frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} + 2} \right| = 0$ $ \Rightarrow \lim \frac{{1 – 2n}}{{\sqrt {{n^2} + 1} }} = – 2.$ Ví dụ 2. Chứng minh rằng dãy số $({u_n}):{u_n} = {( – 1)^n}$ không có giới hạn. Ta có: ${u_{2n}} = 1$ $ \Rightarrow \lim {u_{2n}} = 1$; ${u_{2n + 1}} = – 1$ $ \Rightarrow \lim {u_{2n + 1}} = – 1.$ Vì giới hạn của dãy số nếu có là duy nhất nên ta suy ra dãy $\left( {{u_n}} \right)$ không có giới hạn. Ví dụ 3. Chứng minh các giới hạn sau: 1. $\lim \frac{{{n^2} + 1}}{n} = + \infty .$ 2. $\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .$ 1. Với mọi số thực dương $M$ lớn tùy ý, ta có: $\left| {\frac{{{n^2} + 1}}{n}} \right| > M$ $ \Leftrightarrow {n^2} – Mn + 1 > 0$ $ \Leftrightarrow n > \frac{{M + \sqrt {{M^2} – 4} }}{2}.$ Ta chọn ${n_0} = \left[ {\frac{{M + \sqrt {{M^2} – 4} }}{2}} \right]$ thì ta có: $\frac{{{n^2} + 1}}{n} > M$, $\forall n > {n_0}.$ Do đó: $\lim \frac{{{n^2} + 1}}{n} = + \infty .$ 2. Với mọi $M > 0$ lớn tùy ý, ta có: $\frac{{n – 2}}{{\sqrt n }} > M$ $ \Leftrightarrow n – M\sqrt n – 2 > 0$ $ \Leftrightarrow n > {\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)^2}.$ Ta chọn ${n_0} = \left[ {{{\left( {\frac{{M + \sqrt {{M^2} + 8} }}{2}} \right)}^2}} \right]$ thì ta có: $\frac{{n – 2}}{{\sqrt n }} > M$, $\forall n > {n_0}.$ Do đó: $\lim \frac{{2 – n}}{{\sqrt n }} = – \infty .$