Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Dạng toán 1: Tìm nguyên hàm của hàm số mũ và logarit dựa trên dạng nguyên hàm cơ bản.

Thảo luận trong 'Bài 1. Nguyên hàm' bắt đầu bởi Tăng Giáp, 6/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,632
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    Bằng các phép biến đổi đại số, ta biến đổi biểu thức dưới dấu tích phân về các dạng nguyên hàm cơ bản đã biết.

    Ví dụ 1: Tìm nguyên hàm của các hàm số sau:
    a) $f(x) = \frac{1}{{{e^x} – {e^{ – x}}}}.$
    b) $\frac{{{2^{2x}}{3^x}}}{{{{16}^x} – {9^x}}}.$

    a) Ta có: $\int f (x)dx$ $ = \int {\frac{{d\left( {{e^x}} \right)}}{{{e^{2x}} – 1}}} $ $ = \frac{1}{2}\ln \left| {\frac{{{e^x} – 1}}{{{e^x} + 1}}} \right| + C.$
    b) Chia tử số và mẫu số của biểu thức dưới dấu tích phân cho ${4^x}$, ta được:
    $\int f (x)dx$ $ = \int {\frac{{{{\left( {\frac{4}{3}} \right)}^x}}}{{{{\left( {\frac{4}{3}} \right)}^{2x}} – 1}}} dx$ $ = \frac{1}{{\ln \frac{4}{3}}}\int {\frac{{d\left[ {{{\left( {\frac{4}{3}} \right)}^x}} \right]}}{{{{\left( {\frac{4}{3}} \right)}^{2x}} – 1}}} dx$ $ = \frac{1}{{\ln \frac{4}{3}}}.\frac{1}{2}\ln \left| {\frac{{{{\left( {\frac{4}{3}} \right)}^x} – 1}}{{{{\left( {\frac{4}{3}} \right)}^x} + 1}}} \right| + C$ $ = \frac{1}{{2(\ln 4 – \ln 3)}}\ln \left| {\frac{{{4^x} – {3^x}}}{{{4^x} + {3^x}}}} \right| + C.$

    Ví dụ 2: Tìm nguyên hàm của các hàm số sau:
    a) $f(x) = \frac{1}{{1 + {8^x}}}.$
    b) $f(x) = \frac{{\ln (ex)}}{{3 + x\ln x}}.$

    a) Ta có: $\int f (x)dx$ $ = \int {\frac{1}{{1 + {8^x}}}} dx$ $ = \int {\left( {1 – \frac{{{8^x}}}{{1 + {8^x}}}} \right)} dx$ $ = x – \frac{{\ln \left( {1 + {8^x}} \right)}}{{\ln 8}} + C.$
    b) Ta có: $\int f (x)dx$ $ = \int {\frac{{1 + \ln x}}{{3 + x\ln x}}} dx$ $ = \int {\frac{{d(x\ln x)}}{{3 + x\ln x}}} $ $ = \int {\frac{{d(3 + x\ln x)}}{{3 + x\ln x}}} $ $ = \ln |3 + x\ln x| + C.$
     

Chia sẻ trang này