Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Dạng toán 1: Viết phương trình mặt phẳng $\left( \alpha \right)$ khi biết pháp tuyến

Thảo luận trong 'Ôn tập hình học mặt phẳng' bắt đầu bởi Tăng Giáp, 6/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,630
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    Dạng toán 1: Viết phương trình mặt phẳng $\left( \alpha \right)$ khi biết pháp tuyến $\overrightarrow n \left( {A;B;C} \right)$ và toạ độ điểm $M\left( {{x_0};{y_0};{z_0}} \right)$ thuộc mặt phẳng.


    Phương pháp: Phương trình mặt phẳng $\left( \alpha \right)$ là: $A\left( {x – {x_0}} \right) + B\left( {y – {y_0}} \right)$ $ + C\left( {z – {z_0}} \right) = 0$ $ \Leftrightarrow Ax + By + Cz$ $ – A{x_0} – B{y_0} – C{z_0} = 0.$

    Ví dụ 1: Viết phương trình mặt phẳng $\left( \alpha \right)$ đi qua điểm $M\left( {1;2;3} \right)$ và có pháp tuyến là $\overrightarrow n \left( {3;2;4} \right).$

    Phương trình mặt phẳng $\left( \alpha \right)$ là: $3\left( {x – 1} \right) + 2\left( {y – 2} \right)$ $ + 4\left( {z – 3} \right) = 0$ $ \Leftrightarrow 3x + 2y + 4z – 19 = 0.$
     

Chia sẻ trang này