Phương pháp: Nếu $M’ = {Đ_d}\left( M \right)$ với $M$ di động trên hình $\left( H \right)$ thì $M’$ di động trên hình $\left( H’ \right)$ là ảnh của hình $\left( H \right)$ qua phép đối xứng trục $d$. Ví dụ 5. Trên đường tròn $\left( O,R \right)$ cho hai điểm cố định $A,B$. Đường tròn $\left( O’;R’ \right)$ tiếp xúc ngoài với $\left( O \right)$ tại $A$. Một điểm $M$ di động trên $\left( O \right)$. $MA$ cắt $\left( O’ \right)$ tại điểm thứ hai $A’$. Qua $A’$ kẻ đường thẳng song song với $AB$ cắt $MB$ tại $B’$. Tìm quỹ tích điểm $B’.$ Gọi $C = A’B’ \cap \left( {O’} \right).$ Vẽ tiếp tuyến chung của $\left( O \right)$ và $\left( {O’} \right)$ tại điểm $A.$ Ta có: $\widehat {A’CA} = \widehat {xAM}$ $ = \widehat {ABM} = \widehat {BB’A’}$ do đó $ABB’C$ là hình thang cân. Gọi $d$ là trục đối xứng của hình thang này thì ${Đ_d}\left( C \right) = B’$ mà $C$ di động trên đường tròn $\left( {O’} \right)$ nên $B’$ di động trên đường tròn $\left( {O”} \right)$ là ảnh của $\left( {O’} \right)$ qua ${Đ_d}.$ Ví dụ 6. Cho tam giác $ABC$ có tâm đường tròn nội tiếp $I$, $P$ là một điểm nằm trong tam giác. Gọi $A’,B’,C’$ là các điểm đối xứng với $P$ lần lượt đối xứng qua $IA,IB,IC$. Chứng minh các đường thẳng $AA’,BB’,CC’$ đồng quy. Giả sử điểm $P$ nằm trong tam giác $IAB$. Gọi ${{P}_{1}},{{P}_{2}},{{P}_{3}}$ lần lượt đối xứng với $P$ qua các cạnh $BC,CA,AB$. Ta sẽ chứng minh $AA’,BB’,CC’$ đồng quy tại tâm đường tròn ngoại tiếp tam giác ${{P}_{1}}{{P}_{2}}{{P}_{3}}$. Hiển nhiên ta có $A{{P}_{2}}=A{{P}_{3}}$ vậy để chứng minh $AA’$ là trung trực của ${{P}_{2}}{{P}_{3}}$ ta cần chứng minh $\widehat{{{P}_{2}}AA’}=\widehat{{{P}_{3}}AA’}$. Ta có: $\widehat {{P_3}AA’}$ $ = \widehat {{P_3}AP} + \widehat {PAA’}$ $ = 2\alpha + 2\beta .$ Tương tự $\widehat {{P_2}AA’}$ $ = \widehat {{P_2}AC} + \widehat {CAA’}$ $ = \widehat {CAP} + \widehat {CAA’}$ $ = 2\alpha + 2\beta .$ Vậy $\widehat {{P_2}AA’} = \widehat {{P_3}AA’}$ nên $AA’$ là trung trực của ${P_2}{P_3}.$ Tương tự $BB’,CC’$ lần lượt là trung trực của ${{P}_{1}}{{P}_{3}}$ và ${{P}_{1}}{{P}_{2}}$ nên chúng đồng quy tại tâm đường tròn ngoại tiếp tam giác ${{P}_{1}}{{P}_{2}}{{P}_{3}}$.