Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
  1. Thủ thuật: Nếu muốn tìm lời giải một câu vật lý trên Google, bạn hãy gõ: tanggiap + câu hỏi.
    Dismiss Notice

Phương pháp giải PT mũ và BPT: Biến đổi, quy về cùng cơ số

Thảo luận trong 'Bài 3. Phương trình và bất phương trình mũ' bắt đầu bởi Tăng Giáp, 6/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,614
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    KIẾN THỨC CẦN GHI NHỚ
    1. ${a^{f\left( x \right)}} = {a^{g\left( x \right)}}$ $ \Leftrightarrow f\left( x \right) = g\left( x \right).$
    2. ${a^{f\left( x \right)}} = b = {a^{{{\log }_a}b}}$ $ \Leftrightarrow f\left( x \right) = {\log _a}b.$
    3. ${a^{f\left( x \right)}} = {b^{g\left( x \right)}}$ $ \Leftrightarrow f\left( x \right) = g\left( x \right){\log _a}b.$
    4. ${a^{f\left( x \right)}} > {a^{g\left( x \right)}}$ $(1).$
    + Nếu $a > 1$ thì $\left( 1 \right) \Leftrightarrow f\left( x \right) > g\left( x \right).$
    + Nếu $0 < a < 1$ thì $\left( 1 \right) \Leftrightarrow f\left( x \right) < g\left( x \right).$
    Hay $\left( 1 \right) \Leftrightarrow \left\{ \begin{array}{l}
    a > 0\\
    \left( {a – 1} \right)\left( {f\left( x \right) – g\left( x \right)} \right) > 0
    \end{array} \right.$


    PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ VÀ BẤT PHƯƠNG TRÌNH MŨ
    Dạng 1. Biến đổi, quy về cùng cơ số
    Phương pháp
    : Ta sử dụng phép biến đổi tương đương sau:
    ${a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow a = 1$ hoặc $\left\{ \begin{array}{l}
    0 < a \ne 1\\
    f\left( x \right) = g\left( x \right)
    \end{array} \right.$
    Logarit hóa và đưa về cùng cơ số:
    + Dạng 1: Phương trình: ${a^{f\left( x \right)}} = b \Leftrightarrow \left\{ \begin{array}{l}
    0 < a \ne 1,b > 0\\
    f\left( x \right) = {\log _a}b
    \end{array} \right.$
    + Dạng 2: Phương trình:
    ${a^{f\left( x \right)}} = {b^{g\left( x \right)}}$ $ \Leftrightarrow {\log _a}{a^{f\left( x \right)}} = {\log _a}{b^{f\left( x \right)}}$ $ \Leftrightarrow f\left( x \right) = g\left( x \right).{\log _a}b$ hoặc ${a^{f\left( x \right)}} = {b^{g\left( x \right)}}$ $⇔ {\log _b}{a^{f\left( x \right)}} = {\log _b}{b^{g\left( x \right)}}$ $ \Leftrightarrow f\left( x \right).{\log _b}a = g\left( x \right).$

    Ví dụ 1. Giải các phương trình:
    1. ${2^{{x^2} – x + 8}} = {4^{1 – 3x}}.$
    2. ${5^{x + 1}} – {5^x} = {2^{x + 1}} + {2^{x + 3}}.$

    1. ${2^{{x^2} – x + 8}} = {4^{1 – 3x}}$ $ \Leftrightarrow {2^{{x^2} – x + 8}} = {2^{2\left( {1 – 3x} \right)}}$ $ \Leftrightarrow {x^2} – x + 8 = 2\left( {1 – 3x} \right)$ $ \Leftrightarrow {x^2} + 5x + 6 = 0$ $ \Leftrightarrow x = – 2, x = – 3.$
    Vậy, phương trình cho có nghiệm $x = – 2, x = – 3.$
    2. ${5^{x + 1}} – {5^x} = {2^{x + 1}} + {2^{x + 3}}$ $ \Leftrightarrow {5.5^x} – {5^x} = {2.2^x} + {2^3}{.2^x}$
    $ \Leftrightarrow {4.5^x} = {10.2^x}$ $ \Leftrightarrow {\left( {\frac{5}{2}} \right)^x} = \frac{{10}}{4} = \frac{5}{2}$ $ \Leftrightarrow x = 1.$
    Vậy, phương trình cho có nghiệm $x = 1.$

    Ví dụ 2.Giải các phương trình:
    1. ${8^{\frac{x}{{x + 2}}}} = {36.3^{2 – x}}.$
    2. $\sqrt {{2^x}.\sqrt[3]{{{4^x}}}.\sqrt[{3{\rm{x}}}]{{0.125}}} = 4\sqrt[3]{2}.$

    1. Điều kiện: $x \ne – 2.$
    Phương trình đã cho $ \Leftrightarrow {2^{\frac{{3x}}{{x + 2}}}} = {2^2}{.3^{4 – x}}$ $ \Leftrightarrow {2^{\frac{{x – 4}}{{x + 2}}}} = {3^{4 – x}}$ $ \Leftrightarrow \frac{{x – 4}}{{x + 2}}{\log _3}2 = 4 – x$
    $ \Leftrightarrow \left( {x – 4} \right)\left( {x + 2 + {{\log }_3}2} \right) = 0$ $ \Leftrightarrow x = 4$ hoặc $x = – 2 – {\log _3}2.$
    Vậy, phương trình cho có nghiệm: $x = 4$ hoặc $x = – 2 – {\log _3}2.$
    2. Điều kiện: $\left\{ \begin{array}{l}
    x \ge \frac{1}{3}\\
    3x \in N
    \end{array} \right.$
    Vì các cơ số của các lũy thừa đều viết được dưới dạng lũy thừa cơ số $2$ nên ta biến đổi hai vế của phương trình về lũy thừa cơ số $2$ và so sánh hai số mũ.
    Phương trình $ \Leftrightarrow \sqrt {{2^x}{{.2}^{2.\frac{x}{3}}}.{{\left( {\frac{1}{8}} \right)}^{\frac{1}{{{\rm{3x}}}}}}} $ $ = {2^2}{.2^{\frac{1}{3}}}$ $ \Leftrightarrow {2^{\frac{x}{2}}}{.2^{\frac{x}{3}}}{2^{\frac{{ – 1}}{{{\rm{2x}}}}}} = {2^{\frac{7}{3}}}$
    $ \Leftrightarrow {2^{\frac{x}{2} + \frac{x}{3} – \frac{1}{{2x}}}} = {2^{\frac{7}{3}}}$ $ \Leftrightarrow \frac{x}{2} + \frac{x}{3} – \frac{1}{{2x}} = \frac{7}{3}$ $ \Leftrightarrow 5{x^2} – 14x – 3 = 0$ $ \Leftrightarrow x = – \frac{1}{5}$ hoặc $x = 3.$
    Kết hợp với điều kiện ta có $x = 3$ là nghiệm của phương trình.

    Ví dụ 3. Giải phương trình: ${4^{{x^2} – 3x + 2}} + {4^{2{x^2} + 6x + 5}}$ $ = {4^{3{x^2} + 3x + 7}} + 1.$

    Phương trình đã cho $ \Leftrightarrow {4^{{x^2} – 3x + 2}} + {4^{2{x^2} + 6x + 5}}$ $ = {4^{{x^2} – 3x + 2}}{.4^{2{x^2} + 6x + 5}} + 1$
    $ \Leftrightarrow {4^{{x^2} – 3x + 2}} – 1 + {4^{2{x^2} + 6x + 5}}$ $ – {4^{{x^2} – 3x + 2}}{.4^{2{x^2} + 6x + 5}} = 0$
    $ \Leftrightarrow \left( {{4^{{x^2} – 3x + 2}} – 1} \right)\left( {{4^{2{x^2} + 6x + 5}} – 1} \right) = 0.$
    ${4^{{x^2} – 3x + 2}} = 1$ $ \Rightarrow {x^2} – 3x + 2 = 0$ $ \Leftrightarrow x = 1$ hoặc $x = 2.$
    ${4^{2{x^2} + 6x + 5}} = 1$ $ \Rightarrow 2{x^2} + 6x + 5 = 0$, phương trình này vô nghiệm.
    Vậy, phương trình cho có $2$ nghiệm: $x = 1$, $x = 2.$
     

    Bình Luận Bằng Facebook

Chia sẻ trang này