Khi giải phương trình lượng giác mà gặp dạng tổng (hoặc hiệu) của $sin$ (hoặc $cos$) với nhiều cung khác nhau ta cần để ý đến các cung có tổng (hiệu) các góc bằng nhau để áp dụng công thức tổng sang tích. Ví dụ 2. Giải các phương trình lượng giác sau: a. $\sin x + \sin 2x + \sin 3x$ $ + \sin 4x + \sin 5x + \sin 6x = 0.$ b. $\cos 3x{\cos ^3}x – \sin 3x{\sin ^3}x$ $ = \frac{{2 – 3\sqrt 2 }}{8}.$ c. $1 + \sin x + \cos 3x$ $ = \cos x + \sin 2x + \cos 2x.$ d. ${\cos ^3}x + {\sin ^3}x$ $ = \sin 2x + \sin x + \cos x.$ a. Nhận xét: Bài toán có các cung khác nhau biểu diễn dưới dạng tổng (hiệu) của các hàm số $sin$ (hàm số $cos$) ta nên ghép các số hạng này thành cặp sao cho tổng (hiệu) các cung của chúng bằng nhau, cụ thể trong trường hợp này ta để ý: $x + 6x$ $ = 2x + 5x$ $ = 3x + 4x.$ Tại sao lại cần phải ghép như vậy? Lý do là chúng ta cần xuất hiện thừa số chung để nhóm ra ngoài, đưa bài toán về dạng tích. $PT \Leftrightarrow \left( {\sin 6x + \sin x} \right)$ $ + \left( {\sin 5x + \sin 2x} \right) + \left( {\sin 4x + \sin 3x} \right) = 0$ $ \Leftrightarrow 2\sin \frac{{7x}}{2}\left( {\cos \frac{{5x}}{2} + \cos \frac{x}{2} + \cos \frac{{3x}}{2}} \right) = 0$ $ \Leftrightarrow 4\sin \frac{{7x}}{2}\cos \frac{{3x}}{2}\left( {2\cos x + 1} \right) = 0.$ Vậy phương trình có nghiệm $x = \frac{{k2\pi }}{7}$, $x = \frac{\pi }{3} + \frac{{k2\pi }}{3}$, $x = \pm \frac{{2\pi }}{3} + k2\pi $ $\left( {k \in Z} \right).$ b. Ta có thể giải phương trình này bằng cách sử dụng công thức nhân ba của $sin$ và $cos$ nhưng lời giải sẽ phức tạp hơn. Chính vì thế mà ta khéo léo phân tích để áp dụng công thức tích sang tổng. $PT \Leftrightarrow \frac{1}{2}\left( {\cos 4x + \cos 2x} \right){\cos ^2}x$ $ + \frac{1}{2}\left( {\cos 4x – \cos 2x} \right){\sin ^2}x$ $ = \frac{{2 – 3\sqrt 2 }}{8}$ $ \Leftrightarrow \cos 4x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$ $ + \cos 2x\left( {{{\cos }^2}x – {{\sin }^2}x} \right)$ $ = \frac{{2 – 3\sqrt 2 }}{4}$ $ \Leftrightarrow \cos 4x + {\cos ^2}2x = \frac{{2 – 3\sqrt 2 }}{4}$ $ \Leftrightarrow \cos 4x = – \frac{{\sqrt 2 }}{2}$ $ \Leftrightarrow x = \pm \frac{{3\pi }}{{16}} + k\frac{\pi }{2}$ $(k ∈ Z).$ c. $PT \Leftrightarrow 1 – \cos 2x + \sin x$ $ – \sin 2x + \cos 3x – \cos x = 0$ $ \Leftrightarrow 2{\sin ^2}x + \sin x$ $ – 2\sin x\cos x – 2\sin 2x\sin x = 0$ $ \Leftrightarrow \sin x\left( {2\sin x – 2\cos x – 2\sin 2x + 1} \right) = 0$ $ \Leftrightarrow \left[ \begin{array}{l} \sin x = 0\\ 2\left( {\sin x – \cos x} \right) – 4\sin x\cos x + 1 = 0 \end{array} \right.$ Đáp số: $x = k\pi $, $x = \pm \frac{\pi }{3} + k2\pi $, $x = – \frac{\pi }{6} + k2\pi $, $x = \frac{{7\pi }}{6} + k2\pi $ $(k ∈ Z).$ d. $PT \Leftrightarrow 2\sin x\cos x + \sin x$ $ – {\sin ^3}x + \cos x – {\cos ^3}x = 0$ $ \Leftrightarrow 2\sin x\cos x + \sin x{\cos ^2}x$ $ + \cos x{\sin ^2}x = 0$ $ \Leftrightarrow \sin x\cos x\left( {2 + \sin x + \cos x} \right) = 0.$ Đáp số: $x = k\frac{\pi }{2}$ $(k ∈ Z).$ Ví dụ 3. Giải các phương trình lượng giác sau: a. $\sin 2x\sin 5x = \sin 3x\sin 4x.$ b. ${\cos ^4}x + {\sin ^4}x$ $ + \cos \left( {x – \frac{\pi }{4}} \right)\sin \left( {3x – \frac{\pi }{4}} \right)$ $ – \frac{3}{2} = 0.$ c. $\sqrt 3 \cos 5x – 2\sin 3x\cos 2x – \sin x = 0.$ d. $\sin x + \cos x\sin 2x + \sqrt 3 \cos 3x$ $ = 2\left( {\cos 4x + {{\sin }^3}x} \right).$ a. $PT \Leftrightarrow \frac{1}{2}\left( {\cos 7x – \cos 3x} \right)$ $ = \frac{1}{2}\left( {\cos 7x – \cos x} \right)$ $ \Leftrightarrow \cos 3x = \cos x$ $ \Leftrightarrow 3x = \pm x + k2\pi $ $ \Leftrightarrow x = k\frac{\pi }{2}$ $(k ∈ Z).$ b. $PT \Leftrightarrow 1 – \frac{1}{2}{\sin ^2}2x$ $ + \frac{1}{2}\left( {\sin \left( {4x – \frac{\pi }{2}} \right) + \sin 2x} \right)$ $ – \frac{3}{2} = 0$ $ \Leftrightarrow {\sin ^2}2x + \sin 2x – 2 = 0$ $ \Leftrightarrow \left[ \begin{array}{l} \sin 2x = 1\\ \sin 2x = – 2\left( {loại} \right) \end{array} \right.$ $ \Leftrightarrow x = \frac{\pi }{4} + k\pi $ $\left( {k \in Z} \right).$ c. Nhận xét: Từ sự xuất hiện các cung $5x,3x,2x,x$ và $3x + 2x = 5x$ ta nghĩ ngay đến việc áp dụng công thức tích sang tổng để đưa về cung $5x$. Còn cung $x$ thì xử lý thế nào, ta quan sát lời giải sau: $PT \Leftrightarrow \sqrt 3 \cos 5x – \sin 5x$ $ – \sin x – \sin x = 0$ $ \Leftrightarrow \frac{{\sqrt 3 }}{2}\cos 5x – \frac{1}{2}\sin 5x = \sin x$ $ \Leftrightarrow \sin \left( {\frac{\pi }{3} – 5x} \right) = \sin x$ $ \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} – k\frac{\pi }{3}\\ x = – \frac{\pi }{6} – k\frac{\pi }{2} \end{array} \right.$ $(k ∈ Z).$ Vậy phương trình có nghiệm: $x = \frac{\pi }{{12}} – k\frac{\pi }{3}$, $x = – \frac{\pi }{6} – k\frac{\pi }{2}$ $\left( {k \in Z} \right).$ Chú ý: Đối với dạng phương trình $a\sin x + b\cos x$ $ = a’\sin kx + b’\cos kx$, $k \ne 0,1$ ta coi như $2$ vế của phương trình là $2$ phương trình bậc nhất với $sin$ và $cos$, do đó ta có cách làm tương tự. d. $PT \Leftrightarrow \sin x\left( {1 – 2{{\sin }^2}x} \right)$ $ + \cos x\sin 2x + \sqrt 3 \cos 3x$ $ = 2\cos 4x$ $ \Leftrightarrow \sin 3x + \sqrt 3 \cos 3x = 2\cos 4x$ $ \Leftrightarrow \frac{1}{2}\sin 3x + \frac{{\sqrt 3 }}{2}\cos 3x = \cos 4x$ $ \Leftrightarrow \cos 4x = \cos \left( {3x – \frac{\pi }{6}} \right)$ $ \Leftrightarrow 4x = \pm \left( {3x – \frac{\pi }{6}} \right) + k2\pi $ $ \Leftrightarrow \left[ \begin{array}{l} x = – \frac{\pi }{6} + k2\pi \\ x = \frac{\pi }{{42}} + k\frac{{2\pi }}{7} \end{array} \right.\left( {k \in Z} \right).$