Phương pháp 1. Tìm tiệm cận ngang, tiệm cận đứng của đồ thị hàm số $y = f(x)$ Thực hiện theo các bước sau: + Bước 1. Tìm tập xác định của hàm số $f(x).$ + Bước 2. Tìm các giới hạn của $f(x)$ khi $x$ dần tới các biên của miền xác định và dựa vào định nghĩa của các đường tiệm cận để kết luận. Chú ý: + Đồ thị hàm số $f$ chỉ có thể có tiệm cận ngang khi tập xác định của nó là một khoảng vô hạn hay một nửa khoảng vô hạn (nghĩa là biến $x$ có thể tiến đến $ + \infty $ hoặc $ – \infty $). + Đồ thị hàm số $f$ chỉ có thể có tiệm cận đứng khi tập xác định của nó có một trong các dạng sau: $(a;b)$, $[a;b)$, $(a;b]$, $(a;+∞)$, $(-∞;b)$ hoặc là hợp của các tập hợp này và tập xác định không có một trong các dạng sau: $R$, $(c;+∞)$, $(-∞;d)$, $[c;d]$. 2. Tìm tiệm cận xiên của đồ thị hàm số $y = f(x)$ Thực hiện theo các bước sau: + Bước 1. Tìm tập xác định của hàm số (đồ thị hàm số $f$ chỉ có thể có tiệm cận xiên nếu tập xác định của nó là là một khoảng vô hạn hay một nửa khoảng vô hạn). + Bước 2. Sử dụng định nghĩa về tiệm cận xiên. Hoặc sử dụng định lí sau: Nếu $\mathop {\lim }\limits_{x \to + \infty } \frac{{f(x)}}{x} = a \ne 0$ và $\mathop {\lim }\limits_{x \to + \infty } [f(x) – ax] = b$ hoặc $\mathop {\lim }\limits_{x \to – \infty } \frac{{f(x)}}{x} = a \ne 0$ và $\mathop {\lim }\limits_{x \to – \infty } [f(x) – ax] = b$ thì đường thẳng ${\rm{y}} = {\rm{ax}} + {\rm{b}}$ là tiệm cận xiên của đồ thị hàm số $f$. CHÚ Ý: Đối với hàm phân thức: $f\left( x \right) = \frac{{P(x)}}{{Q(x)}}$ trong đó $P(x)$, $Q(x)$ là hai đa thức của $x$ ta thường dùng phương pháp sau để tìm các đường tiệm cận của đồ thị hàm số: a. Tiệm cận đứng + Nếu $\left\{ \begin{array}{l} P({x_0}) \ne 0\\ Q({x_0}) = 0 \end{array} \right.$ thì đường thẳng: $x = {x_0}$ là tiệm cận đứng của đồ thị hàm số. b. Tiệm cận ngang + Nếu bậc của $P(x)$ bé hơn bậc của $Q(x)$ thì đồ thị của hàm số có tiệm cận ngang là trục hoành độ. + Nếu bậc của $P(x)$ bằng bậc của $Q(x)$ thì đồ thị hàm có tiệm cận ngang là đường thẳng: $y = \frac{A}{B}$ trong đó $A$, $B$ lần lượt là hệ số của số hạng có số mũ lớn nhất của $P(x)$ và $Q(x).$ + Nếu bậc của $P(x)$ lớn hơn bậc của $Q(x)$ thì đồ thị của hàm số không có tiệm cận ngang. c. Tiệm cận xiên + Nếu bậc của $P(x)$ bé hơn hay bằng bậc của $Q(x)$ hoặc lớn hơn bậc của $Q(x)$ từ hai bậc trở lên thì đồ thị hàm số không có tiệm cận xiên. + Nếu bậc của $P(x)$ lớn hơn bậc của $Q(x)$ một bậc và $P(x)$ không chia hết cho $Q(x)$ thì đồ thị hàm có tiệm cận xiên và ta tìm tiệm cận xiên bằng cách chia $P(x)$ cho $Q(x)$ và viết ${\rm{f}}\left( {\rm{x}} \right) = {\rm{ax}} + {\rm{b}} + \frac{{R(x)}}{{Q(x)}}$, trong đó $\mathop {\lim }\limits_{x \to + \infty } \frac{{R(x)}}{{Q(x)}} = 0$, $\mathop {\lim }\limits_{x \to – \infty } \frac{{R(x)}}{{Q(x)}} = 0$. Suy ra đường thẳng ${\rm{y}} = {\rm{ax}} + {\rm{b}}$ là tiệm cận xiên của đồ thị hàm số. Ví dụ minh họa Tìm tiệm cận của hàm số: a. $y = \frac{{2x + 1}}{{x + 1}}.$ b. $y = \frac{{2 – 4x}}{{1 – x}}.$ c. $y = 2x + 1 – \frac{1}{{x + 2}}.$ d. $y = \frac{{{x^2}}}{{1 – x}}.$ a. $y = \frac{{2x + 1}}{{x + 1}}.$ $\mathop {\lim }\limits_{x \to + \infty } y = 2$, $\mathop {\lim }\limits_{x \to – \infty } y = 2$, suy ra đường thẳng $y = 2$ là đường tiệm cận ngang của đồ thị $(C).$ $\mathop {\lim }\limits_{x \to – {1^ + }} y = – \infty $, $\mathop {\lim }\limits_{x \to – {1^ – }} y = + \infty $, suy ra đường thẳng $x = -1$ là đường tiệm cận đứng của đồ thị $(C).$ b. $y = \frac{{2 – 4x}}{{1 – x}}.$ $\mathop {\lim }\limits_{x \to + \infty } y = 4$, $\mathop {\lim }\limits_{x \to – \infty } y = 4$, suy ra đường thẳng $y = 4$ là đường tiệm cận ngang của đồ thị $(C).$ $\mathop {\lim }\limits_{x \to – {1^ + }} y = – \infty $, $\mathop {\lim }\limits_{x \to – {1^ – }} y = + \infty $, suy ra đường thẳng $x = 1$ là đường tiệm cận đứng của đồ thị $(C).$ c. $y = 2x + 1 – \frac{1}{{x + 2}}.$ $\mathop {\lim }\limits_{x \to – {2^ – }} y = + \infty $, $\mathop {\lim }\limits_{x \to – {2^ + }} y = – \infty $, suy ra đường thẳng $x = -2$ là tiệm cận đứng của $(C).$ $\mathop {\lim }\limits_{x \to – \infty } y = – \infty $, $\mathop {\lim }\limits_{x \to + \infty } y = + \infty $. $\mathop {\lim }\limits_{x \to – \infty } [y – (2x + 1)] = 0$, $\mathop {\lim }\limits_{x \to + \infty } [y – (2x + 1)] = 0$, suy ra đường thẳng $y = 2x + 1$ là tiệm cận xiên của $(C).$ d. $y = – x – 1 + \frac{1}{{1 – x}}.$ $\mathop {\lim }\limits_{x \to {1^ – }} y = + \infty $, $\mathop {\lim }\limits_{x \to {1^ + }} y = – \infty $, suy ra đường thẳng $x = 1$ là tiệm cận đứng của $(C).$ $\mathop {\lim }\limits_{x \to – \infty } y = + \infty $, $\mathop {\lim }\limits_{x \to + \infty } y = – \infty $. $\mathop {\lim }\limits_{x \to – \infty } [y – ( – x – 1)] = 0$, $\mathop {\lim }\limits_{x \to + \infty } [y – ( – x – 1)] = 0$, suy ra đường thẳng $y = – x – 1$ là tiệm cận xiên của $(C).$