Bài toán 2: Tìm $\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}}$ trong đó $f({x_0}) = g({x_0}) = 0$ (dạng vô định $\frac{0}{0}$). Để khử dạng vô định $\frac{0}{0}$ ta sử dụng định lí Bơzu (Bézout) cho đa thức: Nếu đa thức $f(x)$ có nghiệm $x = {x_0}$ thì ta có: $f(x) = (x – {x_0}){f_1}(x).$ + Nếu $f(x)$ và $g(x)$ là các đa thức thì ta phân tích $f(x) = (x – {x_0}){f_1}(x)$ và $g(x) = (x – {x_0}){g_1}(x).$ Khi đó $\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}}$ $ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{f_1}(x)}}{{{g_1}(x)}}$, nếu giới hạn này có dạng $\frac{0}{0}$ thì ta tiếp tục quá trình như trên. Chú ý: Nếu tam thức bậc hai $a{x^2} + b{\rm{x + c}}$ có hai nghiệm ${x_1},{x_2}$ thì ta luôn có sự phân tích: $a{x^2} + bx + c$ $ = a(x – {x_1})(x – {x_2}).$ + Nếu $f(x)$ và $g(x)$ là các hàm chứa căn thức thì ta nhân lượng liên hợp để chuyển về các đa thức, rồi phân tích các đa thức như trên. Các lượng liên hợp: $(\sqrt a – \sqrt b )(\sqrt a + \sqrt b )$ $ = a – b.$ $(\sqrt[3]{a} \pm \sqrt[3]{b})(\sqrt[3]{{{a^2}}} \mp \sqrt[3]{{ab}} + \sqrt[3]{{{b^2}}})$ $ = a – b.$ $(\sqrt[n]{a} – \sqrt[n]{b})$$(\sqrt[n]{{{a^{n – 1}}}} + \sqrt[n]{{{a^{n – 2}}b}} + … + \sqrt[n]{{{b^{n – 1}}}})$ $ = a – b.$ + Nếu $f(x)$ và $g(x)$ là các hàm chứa căn thức không đồng bậc ta sử dụng phương pháp tách, chẳng hạn: Nếu $\sqrt[n]{{u(x)}},\sqrt[m]{{v(x)}} \to c$ thì ta phân tích: $\sqrt[n]{{u(x)}} – \sqrt[m]{{v(x)}}$ $ = (\sqrt[n]{{u(x)}} – c) – (\sqrt[m]{{v(x)}} – c).$ Trong nhiều trường hợp việc phân tích như trên không đi đến kết quả ta phải phân tích như sau: $\sqrt[n]{{u(x)}} – \sqrt[m]{{v(x)}}$ $ = (\sqrt[n]{{u(x)}} – m(x))$ $ – (\sqrt[m]{{v(x)}} – m(x))$, trong đó $m(x) \to c.$ + Một đẳng thức cần lưu ý: ${a^n} – {b^n}$ $ = (a – b)$$({a^{n – 1}} + {a^{n – 2}}b + … + a{b^{n – 2}} + {b^{n – 1}}).$ Ví dụ 4. Tìm các giới hạn sau: 1. $A = \mathop {\lim }\limits_{x \to 1} \frac{{{x^n} – 1}}{{x – 1}}.$ 2. $B = \mathop {\lim }\limits_{x \to 1} \frac{{{x^5} – 5{x^3} + 2{x^2} + 6x – 4}}{{{x^3} – {x^2} – x + 1}}.$ 1. Ta có: ${x^n} – 1$ $ = (x – 1)$ $({x^{n – 1}} + {x^{n – 2}} + … + x + 1).$ Suy ra: $\frac{{{x^n} – 1}}{{x – 1}}$ $ = {x^{n – 1}} + {x^{n – 2}} + … + x + 1.$ Do đó: $A = \mathop {\lim }\limits_{x \to 1} \left( {{x^{n – 1}} + {x^{n – 2}} + … + x + 1} \right)$ $ = n.$ 2. Ta có: ${x^5} – 5{x^3} + 2{x^2} + 6x – 4$ $ = {(x – 1)^2}(x + 2)({x^2} – 2).$ ${x^3} – {x^2} – x + 1$ $ = {(x – 1)^2}(x + 1).$ Do đó: $B = \mathop {\lim }\limits_{x \to 1} \frac{{(x + 2)({x^2} – 2)}}{{x + 1}}$ $ = – \frac{3}{2}.$ Ví dụ 5. Tìm các giới hạn sau: 1. $C = \mathop {\lim }\limits_{x \to 0} \frac{{{{(1 + mx)}^n} – {{(1 + nx)}^m}}}{{{x^2}}}.$ 2. $D = \mathop {\lim }\limits_{x \to 0} \frac{{{{(1 + 2x)}^2}{{(1 + 3x)}^3} – 1}}{x}.$ 1. Ta có: ${(1 + mx)^n}$ $ = 1 + mnx$ $ + \frac{{{m^2}n(n – 1){x^2}}}{2}$ $ + {m^3}{x^3}A$, với $A = C_n^3 + mxC_n^4$ $ + … + {\left( {mx} \right)^{n – 3}}C_n^n.$ ${\left( {1 + nx} \right)^m}$ $ = 1 + mnx$ $ + \frac{{{n^2}m(m – 1){x^2}}}{2}$ $ + {n^3}{x^3}B$, với $B = C_m^3 + nxC_m^4$ $ + … + {\left( {nx} \right)^{m – 3}}C_m^m.$ Do đó: $C = \mathop {\lim }\limits_{x \to 0} [\frac{{{m^2}n(n – 1) – {n^2}m(m – 1)}}{2}$ $ + x\left( {{m^3}A – {n^3}B} \right)]$ $ = \frac{{{m^2}n(n – 1) – {n^2}m(m – 1)}}{2}$ $ = \frac{{mn(n – m)}}{2}.$ Ta có: $\frac{{{{\left( {1 + 2x} \right)}^2}{{\left( {1 + 3x} \right)}^3} – 1}}{x}$ $ = \frac{{\left( {1 + 2{x^2}} \right)\left[ {{{\left( {1 + 3x} \right)}^3} – 1} \right]}}{x}$ $ + \frac{{{{(1 + 2x)}^2} – 1}}{x}$ $ = {\left( {1 + 2x} \right)^2}$ $\left( {9 + 27x + 27{x^2}} \right)$ $ – (4 + 4x).$ Suy ra: $D = \mathop {\lim }\limits_{x \to 0} [{\left( {1 + 2x} \right)^2}$ $\left( {9 + 27x + 27{x^2}} \right)$ $ – (4 + 4x)]$ $ = 5.$ Ví dụ 6. Tìm các giới hạn sau: 1. $A = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x – 1} – x}}{{{x^2} – 1}}.$ 2. $B = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{3x + 2}} – x}}{{\sqrt {3x – 2} – 2}}.$ 1. Ta có: $A = $ $\mathop {\lim }\limits_{x \to 1} \frac{{2x – 1 – {x^2}}}{{(x – 1)(x + 1)(\sqrt {2x – 1} + x)}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{{ – (x – 1)}}{{(x + 1)(\sqrt {2x – 1} + x)}}$ $ = 0.$ 2. Ta có: $B = $ $\mathop {\lim }\limits_{x \to 2} \frac{{(3x + 2 – {x^3})(\sqrt {3x – 2} + 2)}}{{3(x – 2)(\sqrt[3]{{{{(3x + 2)}^2}}} + 2\sqrt[3]{{3x + 2}} + 4)}}$ $ = \mathop {\lim }\limits_{x \to 2} \frac{{ – ({x^2} + 2x + 1)(\sqrt {3x – 2} + 2)}}{{3(\sqrt[3]{{{{(3x + 2)}^2}}} + 2\sqrt[3]{{3x + 2}} + 4)}}$ $ = – 1.$ Ví dụ 7. Tìm các giới hạn sau: 1. $C = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{2x – 1}} – 1}}{{x – 1}}.$ 2. $D = $ $\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x – 1} .\sqrt[3]{{3x – 2}}.\sqrt[4]{{4x – 3}} – 1}}{{x – 1}}.$ 1. Đặt $t = x – 1$ ta có: $C = \mathop {\lim }\limits_{t \to 0} \frac{{\sqrt[3]{{2t + 1}} – 1}}{t} = \frac{2}{3}.$ 2. Ta có: $\sqrt {2x – 1} .\sqrt[3]{{3x – 2}}.\sqrt[4]{{4x – 3}} – 1$ $ = \sqrt {2x – 1} .\sqrt[3]{{3x – 2}}\left( {\sqrt[4]{{4x – 3}} – 1} \right)$ $ + \sqrt {2x – 1} \left( {\sqrt[3]{{3x – 2}} – 1} \right)$ $ + \sqrt {2x – 1} – 1.$ Mà: $\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x – 1} – 1}}{{x – 1}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{3x – 2}} – 1}}{{x – 1}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[4]{{4x – 3}} – 1}}{{x – 1}} = 1.$ Nên ta có: $D = 1 + 1 + 1 = 3.$ Ví dụ 8. Tìm các giới hạn sau: 1. $A = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{7x + 1}} – \sqrt {5x – 1} }}{{x – 1}}.$ 2. $B = \mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} – \sqrt[3]{{x + 20}}}}{{\sqrt[4]{{x + 9}} – 2}}.$ 1. Ta có: $A = $ $\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{7x + 1}} – 2 – (\sqrt {5x – 1} – 2)}}{{x – 1}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{7x + 1}} – 2}}{{x – 1}}$ $ – \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {5x – 1} – 2}}{{x – 1}}$ $ = I – J.$ $I = $ $\mathop {\lim }\limits_{x \to 1} \frac{{7(x – 1)}}{{(x – 1)(\sqrt[3]{{{{(7x – 1)}^2}}} + 2\sqrt[3]{{7x – 1}} + 4)}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{7}{{\sqrt[3]{{{{(7x – 1)}^2}}} + 2\sqrt[3]{{7x – 1}} + 4}}$ $ = \frac{7}{{12}}.$ $J = \mathop {\lim }\limits_{x \to 1} \frac{{5(x – 1)}}{{(x – 1)(\sqrt {5x – 1} + 1)}}$ $ = \mathop {\lim }\limits_{x \to 1} \frac{5}{{\sqrt {5x – 1} + 1}} = \frac{5}{3}.$ Vậy $A = – \frac{2}{3}.$ 2. Ta có: $B = \mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} – \sqrt[3]{{x + 20}}}}{{\sqrt[4]{{x + 9}} – 2}}$ $ = \mathop {\lim }\limits_{x \to 7} \frac{{\frac{{\sqrt {x + 2} – 3}}{{x – 7}} – \frac{{\sqrt[3]{{x + 20}} – 3}}{{x – 7}}}}{{\frac{{\sqrt[4]{{x + 9}} – 2}}{{x – 7}}}}.$ Mà: $\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x + 2} – 3}}{{x – 7}}$ $ = \mathop {\lim }\limits_{x \to 7} \frac{1}{{\sqrt {x + 2} + 3}}$ $ = \frac{1}{6}.$ $\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt[3]{{x + 20}} – 3}}{{x – 7}}$ $ = \mathop {\lim }\limits_{x \to 7} \frac{1}{{{{(\sqrt[3]{{x + 20}})}^2} + 3\sqrt[3]{{x + 20}} + 9}}$ $ = \frac{1}{{27}}.$ $\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt[4]{{x + 9}} – 2}}{{x – 7}}$ $ = \mathop {\lim }\limits_{x \to 7} \frac{1}{{{{(\sqrt[4]{{x + 9}})}^3} + 2{{(\sqrt[4]{{x + 9}})}^2} + 4\sqrt[4]{{x + 9}} + 8}}$ $ = \frac{1}{{32}}.$ Vậy $B = \frac{{\frac{1}{6} – \frac{1}{{27}}}}{{\frac{1}{{32}}}} = \frac{{112}}{{27}}.$