Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
  1. Thủ thuật: Nếu muốn tìm lời giải một câu vật lý trên Google, bạn hãy gõ: tanggiap + câu hỏi.
    Dismiss Notice

Tính thể tích vật thể tròn xoay dạng 2

Thảo luận trong 'Bài 2. Tích phân' bắt đầu bởi Tăng Giáp, 6/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,607
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    Phương pháp: Ta có hai dạng sau:
    + Dạng 1: Công thức tính thể tích vật thể tròn xoay sinh bởi miền $\left( D \right)$ giới hạn bởi $y = f\left( x \right)$, $y = g\left( x \right)$, $x = a$, $x = b$ quay quanh trục $Ox$: $V = \pi \int\limits_a^b {\left| {{f^2}(x) – {g^2}(x)} \right|dx} .$
    + Dạng 2: Công thức tính thể tích vật thể tròn xoay sinh bởi miền $\left( D \right)$ giới hạn bởi $x = f\left( y \right)$, $x = g\left( y \right)$, $y = a$, $y = b$ quay quanh trục $Oy$: $V = \pi \int\limits_a^b {\left| {{f^2}(y) – {g^2}(y)} \right|dy} .$

    Ví dụ 5: Tính thể tích khối tròn xoay tạo thành khi:
    a. Quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hai hàm số $y = {x^2}$ và $y = 2 – {x^2}.$
    b. Quay quanh trục tung một hình phẳng giới hạn bởi đồ thị hai hàm số $y = x$ và $y = 2 – {x^2}.$

    a. Hoành độ giao điểm là nghiệm của phương trình:
    ${x^2} = 2 – {x^2}$ $ \Leftrightarrow {x^2} = 1$ $ \Leftrightarrow x = \pm 1.$
    Thể tích vật tròn xoay cần tính là:
    $V = \pi \int\limits_{ – 1}^1 {\left| {{x^4} – {{(2 – {x^2})}^2}} \right|dx} $ $ = \pi \int\limits_{ – 1}^1 {\left| {4{x^2} – 4} \right|dx} $ $ = 4\pi \int\limits_{ – 1}^1 {(1 – {x^2})dx} $ $ = 4\pi \left( {x – \frac{{{x^3}}}{3}} \right)\left| {_{ – 1}^1} \right.$ $ = \frac{{16\pi }}{3}.$
    b. Hoành độ giao điểm là nghiệm của phương trình:
    $x = 2 – {x^2}$ $ \Leftrightarrow {x^2} + x – 2 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
    x = 1 \Rightarrow y = 1\\
    x = -2 \Rightarrow y = -2
    \end{array} \right.$
    Thể tích vật thể được cho bởi:
    $V = \pi \int\limits_{ – 2}^1 {\left| {{y^2} – \left( {2 – y} \right)} \right|dy} $ $ = \frac{9}{2}\pi .$

    Ví dụ 6: Cho hình tròn $\left( C \right)$ tâm $I\left( {0;2} \right)$, bán kính $R = 1$. Tính thể tích khối tròn xoay tạo thành khi:
    a. Quay $\left( C \right)$ quanh trục $Ox$.
    b. Quay $\left( C \right)$ quanh trục $Oy$.

    Đường tròn $(C)$ có phương trình: $\left( C \right):{x^2} + {(y – 2)^2} = 1.$

    Tính thể tích vật thể tròn xoay dạng 2.png

    a. Ta có:
    Ta chia đường tròn $(C)$ thành $2$ đường cong như sau:
    + Nửa $\left( C \right)$ ở trên ứng với $2 \le y \le 3$ có phương trình: $y = {f_1}\left( x \right) = 2 + \sqrt {1 – {x^2}} $ với $x \in \left[ { – 1;{\rm{ }}1} \right]$.
    + Nửa $\left( C \right)$ ở dưới ứng với $1 \le y \le 2$ có phương trình: $y = {f_2}\left( x \right) = 2 – \sqrt {1 – {x^2}} $ với $x \in \left[ { – 1;{\rm{ }}1} \right]$.
    Khi đó, thể tích vật thể tròn xoay cần tính được sinh bởi hình tròn $(C)$ giới hạn bởi các đường: $y = {f_1}\left( x \right) = 2 + \sqrt {1 – {x^2}} $, $y = {f_2}\left( x \right) = 2 – \sqrt {1 – {x^2}} $, $x = -1$, $x = 1$ quay quanh $Ox$ được tính theo công thức: $V = \pi \int\limits_{ – 1}^1 {\left| {f_1^2\left( x \right) – f_2^2\left( x \right)} \right|} dx$ $ = 8\pi \int\limits_{ – 1}^1 {\sqrt {1 – {x^2}} } dx$ $ = 4{\pi ^2}.$
    b. Khi quay $\left( C \right)$ quanh trục $Oy$ ta nhận được khối tròn xoay chính là hình cầu bán kính $R = 1$, do đó: $V = \frac{4}{3}\pi {R^3}$ $ = \frac{4}{3}\pi .$

    Ví dụ 7: Tính thể tích vật thể tạo bởi hình elip $\left( E \right):\frac{{{{\left( {x – 4} \right)}^2}}}{4} + \frac{{{y^2}}}{{16}} \le 1$ quay quanh trục $Oy.$

    Elip $\left( E \right)$ có tâm $I\left( {4,0} \right)$, trục lớn có độ dài $2a = 8$, trục nhỏ có độ dài $2b = 4.$

    Tính thể tích vật thể tròn xoay dạng 2.png

    Ta chia đường biên của elip $(E)$ thành $2$ đường cong như sau:
    + Nửa biên $\left( E \right)$ ứng với $2 \le x \le 4$ có phương trình: $x = {f_1}\left( y \right) = 4 – 2\sqrt {1 – \frac{{{y^2}}}{{16}}} $ với $y \in \left[ { – 4;4} \right].$
    + Nửa biên $\left( E \right)$ ứng với $4 \le x \le 6$ có phương trình: $x = {f_2}\left( y \right) = 4 + 2\sqrt {1 – \frac{{{y^2}}}{{16}}} $ với $y \in \left[ { – 4;4} \right].$
    Thể tích vật thể tròn xoay cần tính được sinh bởi miền $E$ giới hạn bởi các đường: $x = {f_1}\left( y \right) = 4 – 2\sqrt {1 – \frac{{{y^2}}}{{16}}} $, $x = {f_2}\left( y \right) = 4 + 2\sqrt {1 – \frac{{{y^2}}}{{16}}} $, $y = -4$, $y = 4$ quay quanh trục $Oy$ được tính theo công thức:
    $V = \pi \int\limits_{ – 4}^4 {\left( {f_2^2(y) – f_1^2(y)} \right)} dy$ $ = 32\pi \int\limits_{ – 4}^4 {\sqrt {1 – \frac{{{y^2}}}{{16}}} } dy$ $ = 64{\pi ^2}.$
     

    Bình Luận Bằng Facebook

Chia sẻ trang này