Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
  1. Thủ thuật: Nếu muốn tìm lời giải một câu vật lý trên Google, bạn hãy gõ: tanggiap + câu hỏi.
    Dismiss Notice

Ứng dụng số phức giải toán khai triển, tính tổng nhị thức Niutơn

Thảo luận trong 'Bài 1. Các dạng toán liên quan đến số phức' bắt đầu bởi Tăng Giáp, 6/12/18.

  1. Tăng Giáp

    Tăng Giáp Administrator Thành viên BQT

    Tham gia ngày:
    16/11/14
    Bài viết:
    4,628
    Đã được thích:
    282
    Điểm thành tích:
    83
    Giới tính:
    Nam
    Phương pháp
    Ta nhắc lại công thức khai triển nhị thức Niutơn:
    ${\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {a^{n – k}}{b^k}$ $ = C_n^o{a^n} + C_n^1{a^{n – 1}}b + C_n^1{a^{n – 2}}{b^2}$ $ + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}.$
    Ta lưu ý rằng $\forall m \in {N^*}$ thì ${i^{4m}} = 1$, ${i^{4m + 1}} = i$, ${i^{4m + 2}} = – 1$, ${i^{4m + 3}} = – i.$


    Các ví dụ điển hình thường gặp
    Ví dụ 1.
    Tính tổng:
    a. ${S_1} = 1 – C_n^2 + C_n^4 – C_n^6 + … .$
    b. ${S_2} = C_n^1 – C_n^3 + C_n^5 – C_n^7 + … .$

    Ta có:
    ${\left( {1 + i} \right)^n}$ $ = 1 + C_n^1i + C_n^2{i^2} + … + C_n^n{i^n}$
    $ = \left( {1 – C_n^2 + C_n^4 – C_n^6 + …} \right)$ $ + i\left( {C_n^1 – C_n^3 + C_n^5 – C_n^7 + …} \right) (1).$
    ${\left( {1 + i} \right)^n}$ $ = \sqrt {{2^n}} c{\rm{os}}\frac{{n\pi }}{4} + i\sqrt {{2^n}} {\rm{sin}}\frac{{n\pi }}{4} (2).$
    Từ $(1)$ và $(2)$ suy ra:
    ${{\rm{S}}_1} = \sqrt {{2^n}} c{\rm{os}}\frac{{n\pi }}{4}.$
    ${S_2} = \sqrt {{2^n}} {\rm{sin}}\frac{{n\pi }}{4}.$

    Ví dụ 2. Chứng minh rằng: $C_{100}^0 – C_{100}^2 + C_{100}^4 – C_{100}^6$ $ + … – C_{100}^{98} + C_{100}^{100} = – {2^{50}}.$

    ${\left( {1 + i} \right)^{100}}$ $ = C_{100}^0 + C_{100}^1i + C_{100}^2{i^2} + … + C_{100}^{100}{i^{100}}$
    $ = \left( {C_{100}^0 – C_{100}^2 + C_{100}^4 – … + C_{100}^{100}} \right)$ $ + \left( {C_{100}^1 – C_{100}^3 + C_{100}^5 + … – C_{100}^{99}} \right)i.$
    ${\left( {1 + i} \right)^2} = 2i$ $ \Rightarrow {\left( {1 + i} \right)^{100}} = {\left( {2i} \right)^{50}} = – {2^{50}}.$
    Vậy: $C_{100}^0 – C_{100}^2 + C_{100}^4 – … + C_{100}^{100} = – {2^{50}}.$

    Ví dụ 3. Tính các tổng sau:
    $A = C_{15}^0 – 3C_{15}^2 + 5C_{15}^4 – 7C_{15}^6$ $ + …. + 13C_{15}^{12} – 15C_{15}^{14}.$
    $B = 2C_{15}^1 – 4C_{15}^3 + 6C_{15}^5 – 8C_{15}^7$ $ + …. + 14C_{15}^{13} – 16C_{15}^{15}.$

    Xét khai triển:
    ${\left( {1 + x} \right)^{15}}$ $ = C_{15}^0 + C_{15}^1x + C_{15}^2{x^2} + C_{15}^3{x^3}$ $ + … + C_{15}^{12}{x^{12}} + C_{15}^{13}{x^{13}} + C_{15}^{14}{x^{14}} + C_{15}^{15}{x^{15}}$
    $ \Rightarrow x{\left( {1 + x} \right)^{15}}$ $ = C_{15}^0x + C_{15}^1{x^2} + C_{15}^2{x^3} + C_{15}^3{x^4}$ $ + … + C_{15}^{12}{x^{13}} + C_{15}^{13}{x^{14}} + C_{15}^{14}{x^{15}} + C_{15}^{15}{x^{16}}.$
    Lấy đạo hàm hai vế:
    ${\left( {1 + x} \right)^{15}} + 15x{\left( {1 + x} \right)^{14}}$
    $ = C_{15}^0 + 2C_{15}^1x + 3C_{15}^2{x^2} + 4C_{15}^3{x^3}$ $ + … + 13C_{15}^{12}{x^{12}} + 14C_{15}^{13}{x^{13}}$ $ + 15C_{15}^{14}{x^{14}} + 16C_{15}^{15}{x^{15}}.$
    Thay $x$ bởi $i$ ta được:
    ${\left( {1 + i} \right)^{15}} + 15i{\left( {1 + i} \right)^{14}}$ $ = C_{15}^0 + 2C_{15}^1i + 3C_{15}^2{i^2} + 4C_{15}^3{i^3}$ $ + … + 13C_{15}^{12}{i^{12}} + 14C_{15}^{13}{i^{13}}$ $ + 15C_{15}^{14}{i^{14}} + 16C_{15}^{15}{i^{15}}$
    = (${C_{15}^0 – 3C_{15}^2 + 5C_{15}^4 – 7C_{15}^6}$ ${ + …. + 13C_{15}^{12} – 15C_{15}^{14}}$) + (${2C_{15}^1 – 4C_{15}^3 + 6C_{15}^5 – 8C_{15}^7}$ ${ + …. + 14C_{15}^{13} – 16C_{15}^{15}}$)$i.$
    Mặt khác:
    ${\left( {1 + i} \right)^{15}} + 15i{\left( {1 + i} \right)^{14}}$ $ = \sqrt {{2^{15}}} {\left( {c{\rm{os}}\frac{\pi }{4} + {\rm{i}}\sin \frac{\pi }{4}} \right)^{15}}$ $ + 15i\sqrt {{2^{14}}} {\left( {c{\rm{os}}\frac{\pi }{4} + {\rm{i}}\sin \frac{\pi }{4}} \right)^{14}}$
    $ = \sqrt {{2^{15}}} \left( {\frac{{\sqrt 2 }}{2} – \frac{{\sqrt 2 }}{2}i} \right) + 15i{.2^7}\left( { – i} \right)$ $ = {2^7} – {2^7}i + {15.2^7}$ $ = {16.2^7} – {2^7}i = {2^{11}} – {2^7}i.$
    Vậy:
    $A = C_{15}^0 – 3C_{15}^2 + 5C_{15}^4 – 7C_{15}^6$ $ + …. + 13C_{15}^{12} – 15C_{15}^{14} = {2^{11}}.$
    $B = 2C_{15}^1 – 4C_{15}^3 + 6C_{15}^5 – 8C_{15}^7$ $ + …. + 14C_{15}^{13} – 16C_{15}^{15} = – {2^7}.$

    Ví dụ 4. Chứng minh rằng:
    ${S_1} = C_n^0 – C_n^2 + C_n^4 – C_n^6 + C_n^8 – …$ $ = {\left( {\sqrt 2 } \right)^n}\cos \frac{{n\pi }}{4}.$
    ${S_2} = C_n^1 – C_n^3 + C_n^5 – C_n^7 + C_n^9 – …$ $ = {\left( {\sqrt 2 } \right)^n}\sin \frac{{n\pi }}{4}.$

    Xét khai triển nhị thức Newton:
    ${\left( {1 + i} \right)^n}$ $ = C_n^0 + iC_n^1 + {i^2}C_n^2 + {i^3}C_n^3 + {i^4}C_n^4$ $ + … + {i^{n – 1}}C_n^{n – 1} + {i^n}C_n^n.$
    Vì ${i^k} = \left\{ \begin{array}{l}
    1, (k = 4m)\\
    i, (k = 4m + 1)\\
    – 1, (k = 4m + 2)\\
    – i, (k = 4m + 3)
    \end{array} \right.$ với $m \in {{\rm Z}^ + }$, nên ta có:
    ${\left( {1 + i} \right)^n}$ $ = C_n^0 – C_n^2 + C_n^4 – …$ $ + i\left( {C_n^1 – C_n^3 + C_n^5 – ….} \right).$
    Mặt khác, theo công thức Moivre thì:
    ${\left( {1 + i} \right)^n}$ $ = {\left( {\sqrt 2 } \right)^n}{\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)^n}$ $ = {\left( {\sqrt 2 } \right)^n}\left( {\cos \frac{{n\pi }}{4} + i\sin \frac{{n\pi }}{4}} \right).$
    Từ $(1)$ và $(2)$ ta có điều phải chứng minh.

    Ví dụ 5. Tính tổng $S = \frac{1}{2}C_{2n}^1 – \frac{1}{4}C_{2n}^3 + \frac{1}{6}C_{2n}^5 – \frac{1}{8}C_{2n}^7 + …$

    Chú ý rằng $\frac{1}{{2k}}C_{2n}^{2k – 1} = \frac{1}{{2n + 1}}C_{2n + 1}^{2k}$ nên:
    $S = \frac{1}{2}C_{2n}^1 – \frac{1}{4}C_{2n}^3 + \frac{1}{6}C_{2n}^5 – \frac{1}{8}C_{2n}^7 + …$
    $ = \frac{1}{{2n + 1}}C_{2n + 1}^2 – \frac{1}{{2n + 1}}C_{2n + 1}^4$ $ + \frac{1}{{2n + 1}}C_{2n + 1}^6 – \frac{1}{{2n + 1}}C_{2n + 1}^8 + …$
    $ = \frac{1}{{2n + 1}}$.$\left( {C_{2n + 1}^2 – C_{2n + 1}^4 + C_{2n + 1}^6 – C_{2n + 1}^8 + …} \right).$
    Vì ${\left( {1 + i} \right)^{2n + 1}}$ $ = \left( {C_{2n + 1}^0 – C_{2n + 1}^2 + C_{2n + 1}^4 – …} \right)$ $ + i\left( {C_{2n + 1}^1 – C_{2n + 1}^3 + C_{2n + 1}^5 – …} \right).$
    Và ${\left( {1 + i} \right)^{2n + 1}}$ $ = {\left( {\sqrt 2 } \right)^{2n + 1}}$ $\left( {\cos \frac{{2n + 1}}{4}\pi + i\sin \frac{{2n + 1}}{4}\pi } \right)$ nên:
    $C_{2n + 1}^0 – C_{2n + 1}^2 + C_{2n + 1}^4 – C_{2n + 1}^6$ $ + … = {\left( {\sqrt 2 } \right)^{2n + 1}}\cos \frac{{2n + 1}}{4}\pi .$
    Vậy ta có $S = \frac{1}{{2n + 1}}$ $\left[ {1 – {{\left( {\sqrt 2 } \right)}^{2n + 1}}\cos \frac{{2n + 1}}{4}\pi } \right].$

    Ví dụ 6. Tính tổng: $(n \in {{\rm Z}^ + }).$
    $A = C_n^0\cos a + C_n^1\cos 2a + C_n^2\cos 3a$ $ + … + C_n^{n – 1}\cos na + C_n^n\cos (n + 1)a.$
    $B = C_n^0\sin a + C_n^1\sin 2a + C_n^2\sin 3a$ $ + … + C_n^{n – 1}\sin na + C_n^n\sin (n + 1)a.$

    Đặt $z = \cos a + i\sin a$ thì ${z^n} = \cos na + i\sin na.$
    Do đó ta có:
    $A + iB = C_n^0\left( {\cos a + i\sin a} \right)$ $ + C_n^1\left( {\cos 2a + i\sin 2a} \right)$ $ + C_n^2\left( {\cos 3a + i\sin 3a} \right)$
    $ + … + C_n^{n – 1}\left( {\cos na + i\sin na} \right)$ $ + C_n^n\left( {\cos (n + 1)a + i\sin (n + 1)a} \right)$
    $ = z\left( {C_n^0 + C_n^1z + C_n^2{z^2} + C_n^3{z^3} + … + C_n^n{z^n}} \right)$ $ = z{\left( {1 + z} \right)^n}.$
    Vì $1 + z = 1 + \cos a + i\sin a$ $ = 2\cos \frac{a}{2}\left( {\cos \frac{a}{2} + i\sin \frac{a}{2}} \right).$
    Nên: $A + iB = \left( {\cos a + i\sin a} \right)$.${\left[ {2\cos \frac{a}{2}\left( {\cos \frac{a}{2} = i\sin \frac{a}{2}} \right)} \right]^n}$
    $ = {2^n}{\cos ^n}\frac{a}{2}\left( {\cos a + i\sin a} \right)$.$\left( {\cos \frac{{na}}{2} + i\sin \frac{{na}}{2}} \right)$
    $ = {2^n}{\cos ^n}\frac{a}{2}$.$\left( {\cos \frac{{n + 2}}{2}a + i\sin \frac{{n + 2}}{2}a} \right)$
    Vậy $A = {2^n}{\cos ^n}\frac{a}{2}\cos \frac{{n + 2}}{2}a$, $B = {2^n}{\cos ^n}\frac{a}{2}\sin \frac{{n + 2}}{2}a.$
    Nhận xét: Cho $n$ là giá trị cụ thể, suy ra được nhiều biểu thức lượng giác đẹp.
    Ví dụ: $\cos a + 5\cos 2a + 10\cos 3a$ $ + 10\cos 4a + 5\cos 5a + \cos 6a$ $ = {2^5}{\cos ^5}\frac{a}{2}\cos \frac{{7a}}{2}.$
     

    Bình Luận Bằng Facebook

Chia sẻ trang này