Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
  1. Thủ thuật: Nếu muốn tìm lời giải một câu vật lý trên Google, bạn hãy gõ: tanggiap + câu hỏi.
    Dismiss Notice

Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn.

Thảo luận trong 'Bài 1. Các bài toán về công thức tổ hợp, chỉnh hợp' bắt đầu bởi moon, 5/12/18.

  1. moon

    moon Thành viên cấp 2 Thành viên BQT

    Tham gia ngày:
    2/10/14
    Bài viết:
    160
    Đã được thích:
    46
    Điểm thành tích:
    28
    Phương pháp: Giả sử sau khi khai triển ta được đa thức $P(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_n}{x^n}.$
    Xét các khả năng sau:
    a. Nếu ${a_k} > 0$ $\forall k$ (trường hợp ${a_k} < 0$ $\forall k$ tương tự).
    Ta xét bất phương trình ${a_k} \le {a_{k + 1}}$, thông thường giải ra được nghiệm $k \le {k_0} \in N$. Do $k$ nguyên nên $k = 0,1, \ldots ,{k_0}$. Từ đó suy ra bất phương trình ${a_k} > {a_{k + 1}}$ có nghiệm $k > {k_0}.$
    • Nếu ${a_k} = {a_{k + 1}}$ $ \Leftrightarrow k = {k_0}$ thì ta có: ${a_0} < {a_1} < \ldots < {a_{{k_0} – 1}} < {a_{{k_0}}}$ $ = {a_{{k_0} + 1}} > {a_{{k_0} + 2}} > \ldots > {a_n}.$
    Khi đó ta tìm được hai hệ số lớn nhất là ${a_{{k_0}}} = {a_{{k_0} + 1}}.$
    • Nếu phương trình ${a_k} = {a_{k + 1}}$ vô nghiệm thì ta có: ${a_0} < {a_1} < \ldots < {a_{{k_0} – 1}} < {a_{{k_0}}}$ $ > {a_{{k_0} + 1}} > {a_{{k_0} + 2}} > \ldots > {a_n}.$
    Khi đó ta có ${a_{{k_0}}}$ là hệ số lớn nhất trong khai triển của nhị thức.
    b. Nếu ${a_{2k}} > 0$ $\forall k$ và ${a_{2k + 1}} < 0$ $\forall k$ (trường hợp ${a_{2k}} < 0$ $\forall k$ và ${a_{2k + 1}} > 0$ $\forall k$ tương tự) thì khi đó bài toán trở thành tìm số lớn nhất trong các số ${a_{2k}}$. Ta cũng xét bất phương trình ${a_{2k}} \le {a_{2k + 2}}$ rồi làm tương tự như phần 1.

    Bài toán 1: Tìm hệ số có giá trị lớn nhất trong khai triển đa thức: $P(x) = {(2x + 1)^{13}}$ $ = {a_0}{x^{13}} + {a_1}{x^{12}} + \ldots + {a_{13}}.$
    A. $8.$
    B. $4536.$
    C. $4528.$
    D. $4520.$

    Chọn A.
    Ta có hệ số tổng quát sau khi khai triển nhị thức ${(2x + 1)^{13}}$ là ${a_n} = C_{13}^n{.2^{13 – n}}.$
    Suy ra: ${a_{n – 1}} = C_{13}^{n – 1}{.2^{14 – n}}$, $(n = 1,2,3, \ldots ,13).$
    Xét bất phương trình với ẩn số $n$ ta có ${a_{n – 1}} \le {a_n}$ $ \Leftrightarrow C_{13}^{n – 1}{.2^{14 – n}} \le C_n^{13}{.2^{13 – n}}$ $ \Leftrightarrow \frac{{2.13!}}{{(n – 1)!(14 – n)!}} \le \frac{{13!}}{{n!(13 – n)!}}$ $ \Leftrightarrow \frac{2}{{14 – n}} \le \frac{1}{n}$ $ \Leftrightarrow n \le \frac{{14}}{3} \notin N.$
    Do đó bất đẳng thức ${a_{n – 1}} \le {a_n}$ đúng với $n \in \{ 1,2,3,4\} $ và dấu đẳng thức không xảy ra.
    Nên bất đẳng thức ${a_{n – 1}} > {a_n}$ đúng với $n \in \{ 5,6,7,8,9,10,11,12,13\} .$
    Ta được ${a_0} < {a_1} < {a_2} < {a_3} < {a_4}$ và ${a_4} > {a_5} > {a_6} > \ldots > {a_{13}}.$
    Từ đây ta có hệ số có giá trị lớn nhất trong khai triển nhị thức là: ${a_4} = C_{13}^4{.2^9} = 366080.$

    Bài toán 2: Trong khai triển biểu thức $F = {\left( {\sqrt 3 + \sqrt[3]{2}} \right)^9}$ số hạng nguyên có giá trị lớn nhất là?
    A. $8.$
    B. $4536.$
    C. $4528.$
    D. $4520.$

    Chọn B.
    Ta có số hạng tổng quát ${T_{k + 1}} = C_9^k{(\sqrt 3 )^{9 – k}}{(\sqrt[3]{2})^k}.$
    Ta thấy hai bậc của căn thức là $2$ và $3$ là hai số nguyên tố, do đó để ${T_{k + 1}}$ là một số nguyên thì:
    $\left\{ {\begin{array}{*{20}{l}}
    {k \in N}\\
    {0 \le k \le 9}\\
    {(9 – k) \vdots 2}\\
    {k \vdots 3}
    \end{array}} \right.$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
    {k = 3 \Rightarrow {T_4} = C_9^3{{(\sqrt 3 )}^6}{{(\sqrt[3]{2})}^3} = 4536}\\
    {k = 9 \Rightarrow {T_{10}} = C_9^9{{(\sqrt 3 )}^0}{{(\sqrt[3]{2})}^9} = 8}
    \end{array}} \right.$
    Vậy trong khai triển có hai số hạng nguyên là ${T_4} = 4536$ và ${T_{10}} = 8.$
     

Chia sẻ trang này