Để viết phương trình đường tròn $(C)$ trong hệ tọa độ $Oxy$ thỏa mãn các yêu cầu cho trước, ta thường sử dụng 2 phương pháp sau đây:
Phương pháp 1
+ Tìm toạ độ tâm $I\left( {a;b} \right)$ của đường tròn $(C).$
+ Tìm bán kính $R$ của đường tròn $(C).$
+ Viết phương trình của $(C)$ theo dạng ${(x – a)^2} + {(y – b)^2} = {R^2}.$
Phương pháp 2
Giả sử phương trình đường tròn $(C)$ là: ${x^2} + {y^2} – 2ax – 2by + c = 0{\rm{ }}$ (hoặc ${x^2} + {y^2} + 2ax + 2by + c = 0{\rm{ }}$).
+ Từ điều kiện của đề bài thành lập hệ phương trình với ba ẩn là $a, b, c.$
+ Giải hệ để tìm $a, b, c$ từ đó tìm được phương trình đường tròn $(C).$
Chú ý:
+ $A \in \left( C \right) \Leftrightarrow IA = R.$
+ $\left( C \right)$ tiếp xúc với đường thẳng $\Delta $ tại $A$ $ \Leftrightarrow IA = d\left( {I;\Delta } \right) = R.$
+ $\left( C \right)$ tiếp xúc với hai đường thẳng ${\Delta _1}$ và ${\Delta _2}$ $ \Leftrightarrow d\left( {I;{\Delta _1}} \right) = d\left( {I;{\Delta _2}} \right) = R.$
Ví dụ 1: Viết phương trình đường tròn trong mỗi trường hợp sau:
a. Có tâm $I\left( {1; – 5} \right)$ và đi qua $O\left( {0;0} \right).$
b. Nhận $AB$ làm đường kính với $A\left( {1;1} \right),B\left( {7;5} \right).$
c. Đi qua ba điểm: $M\left( { – 2;4} \right),N\left( {5;5} \right),P\left( {6; – 2} \right).$
a. Đường tròn cần tìm có bán kính là $OI = \sqrt {{1^2} + {5^2}} = \sqrt {26} $ nên có phương trình là ${\left( {x – 1} \right)^2} + {\left( {y + 5} \right)^2} = 26.$
b. Gọi $I$ là trung điểm của đoạn $AB$ suy ra $I\left( {4;3} \right).$
$AI = \sqrt {{{\left( {4 – 1} \right)}^2} + {{\left( {3 – 1} \right)}^2}} = \sqrt {13} .$
Đường tròn cần tìm có đường kính là $AB$ suy ra nó nhận $I\left( {4;3} \right)$ làm tâm và bán kính $R = AI = \sqrt {13} $ nên có phương trình là: ${\left( {x – 4} \right)^2} + {\left( {y – 3} \right)^2} = 13.$
c. Gọi phương trình đường tròn $(C)$ có dạng là: ${x^2} + {y^2} – 2ax – 2by + c = 0.$
Do đường tròn đi qua ba điểm $M,N,P$ nên ta có hệ phương trình:
$\left\{ \begin{array}{l}
4 + 16 + 4a – 8b + c = 0\\
25 + 25 – 10a – 10b + c = 0\\
36 + 4 – 12a + 4b + c = 0
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
a = 2\\
b = 1\\
c = – 20
\end{array} \right.$
Vậy phương trình đường tròn cần tìm là: ${x^2} + {y^2} – 4x – 2y – 20 = 0.$
Nhận xét: Đối với ý c ta có thể làm theo cách sau:
Gọi $I\left( {x;y} \right)$ và $R$ là tâm và bán kính đường tròn cần tìm.
Vì $IM = IN = IP$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{I{M^2} = I{N^2}}\\
{I{M^2} = I{P^2}}
\end{array}} \right.$ nên ta có hệ:
${{{\left( {x + 2} \right)}^2} + {{\left( {y – 4} \right)}^2}}$ ${ = {{\left( {x – 5} \right)}^2} + {{\left( {y – 5} \right)}^2}}$
${{{\left( {x + 2} \right)}^2} + {{\left( {y – 4} \right)}^2}}$ ${ = {{\left( {x – 6} \right)}^2} + {{\left( {y + 2} \right)}^2}}$
$ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{x = 2}\\
{y = 1}
\end{array}} \right.$
Ví dụ 2: Viết phương trình đường tròn $(C)$ trong các trường hợp sau:
a. $(C)$ có tâm $I\left( { – 1;2} \right)$ và tiếp xúc với đường thẳng $ Δ: x – 2y + 7 = 0.$
b. $(C)$ đi qua $A\left( {2; – 1} \right)$ và tiếp xúc với hai trục toạ độ $Ox$ và $Oy.$
c. $(C)$ có tâm nằm trên đường thẳng $d:x – 6y – 10 = 0$ và tiếp xúc với hai đường thẳng có phương trình ${d_1}:3x + 4y + 5 = 0$ và ${d_2}:4x – 3y – 5 = 0.$
a. Bán kính đường tròn $(C)$ chính là khoảng cách từ $I$ tới đường thẳng $\Delta $ nên $R = d\left( {I;\Delta } \right)$ $ = \frac{{\left| { – 1 – 4 – 7} \right|}}{{\sqrt {1 + 4} }} = \frac{2}{{\sqrt 5 }}.$
Vậy phương trình đường tròn $(C)$ là ${\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} = \frac{4}{5}.$
b. Vì điểm $A$ nằm ở góc phần tư thứ tư và đường tròn tiếp xúc với hai trục toạ độ nên tâm của đường tròn có dạng $I\left( {R; – R} \right)$ trong đó $R$ là bán kính đường tròn $(C).$
Ta có:
${R^2} = I{A^2}$ $ \Leftrightarrow {R^2} = {\left( {2 – R} \right)^2} + {\left( { – 1 + R} \right)^2}$ $ \Leftrightarrow {R^2} – 6R + 5 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{R = 1}\\
{R = 5}
\end{array}} \right.$
Vậy có hai đường tròn thoả mãn đầu bài là: ${\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} = 1$ và ${\left( {x – 5} \right)^2} + {\left( {y + 5} \right)^2} = 25.$
c. Vì đường tròn cần tìm có tâm $K$ nằm trên đường thẳng $d$ nên gọi $K\left( {6a + 10;a} \right).$
Mặt khác đường tròn tiếp xúc với ${d_1},{d_2}$ nên khoảng cách từ tâm $I$ đến hai đường thẳng này bằng nhau và bằng bán kính $R$ suy ra:
$\frac{{\left| {3(6a + 10) + 4a + 5} \right|}}{5}$ $ = \frac{{\left| {4(6a + 10) – 3a – 5} \right|}}{5}$ $\left| { \Leftrightarrow 22a + 35} \right| = \left| {21a + 35} \right|$ $ \Leftrightarrow \left[ \begin{array}{l}
a = 0\\
a = \frac{{ – 70}}{{43}}
\end{array} \right.$
+ Với $a = 0$ thì $K\left( {10;0} \right)$ và $R = 7$ suy ra $\left( C \right):{\left( {x – 10} \right)^2} + {y^2} = 49.$
+ Với $a = \frac{{ – 70}}{{43}}$ thì $K\left( {\frac{{10}}{{43}};\frac{{ – 70}}{{43}}} \right)$ và $R = \frac{7}{{43}}$ suy ra $\left( C \right):{\left( {x – \frac{{10}}{{43}}} \right)^2} + {\left( {y + \frac{{70}}{{43}}} \right)^2} = {\left( {\frac{7}{{43}}} \right)^2}.$
Vậy có hai đường tròn thỏa mãn có phương trình là $\left( C \right):{\left( {x – 10} \right)^2} + {y^2} = 49$ và $\left( C \right):{\left( {x – \frac{{10}}{{43}}} \right)^2} + {\left( {y + \frac{{70}}{{43}}} \right)^2} = {\left( {\frac{7}{{43}}} \right)^2}.$
Ví dụ 3: Cho hai điểm $A\left( {8;0} \right)$ và $B\left( {0;6} \right).$
a. Viết phương trình đường tròn ngoại tiếp tam giác $OAB.$
b. Viết phương trình đường tròn nội tiếp tam giác $OAB.$
a. Ta có tam giác $OAB$ vuông ở $O$ nên tâm $I$ của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền $AB$ suy ra $I\left( {4;3} \right)$ và bán kính $R = IA$ $ = \sqrt {{{\left( {8 – 4} \right)}^2} + {{\left( {0 – 3} \right)}^2}} = 5.$
Vậy phương trình đường tròn ngoại tiếp tam giác $OAB$ là:
${\left( {x – 4} \right)^2} + {\left( {y – 3} \right)^2} = 25.$
b. Ta có $OA = 8;OB = 6$, $AB = \sqrt {{8^2} + {6^2}} = 10.$
Mặt khác $\frac{1}{2}OA.OB = pr$ (vì cùng bằng diện tích tam giác $ABC$).
Suy ra $r = \frac{{OA.OB}}{{OA + OB + AB}} = 2.$
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ là $\left( {2;2} \right).$
Vậy phương trình đường tròn nội tiếp tam giác $OAB$ là: ${\left( {x – 2} \right)^2} + {\left( {y – 2} \right)^2} = 4.$
Ví dụ 4: Trong mặt phẳng tọa độ $Oxy$, cho hai đường thẳng ${d_1}:\sqrt 3 x + y = 0$ và ${d_2}:\sqrt 3 x – y = 0.$ Gọi $(C)$ là đường tròn tiếp xúc với ${d_1}$ tại $A$, cắt ${d_2}$ tại hai điểm $B, C$ sao cho tam giác $ABC$ vuông tại $B$. Viết phương trình của $(C)$, biết tam giác $ABC$ có diện tích bằng $\frac{{\sqrt 3 }}{2}$ và điểm $A$ có hoành độ dương.
Vì $A \in {d_1}$ $ \Rightarrow A\left( {a; – \sqrt 3 a} \right),a > 0;$ $B,C \in {d_2}$ $ \Rightarrow B\left( {b;\sqrt 3 b} \right),C\left( {c;\sqrt 3 c} \right).$
Suy ra $\overrightarrow {AB} \left( {b – a;\sqrt 3 \left( {a + b} \right)} \right),$ $\overrightarrow {AC} \left( {c – a;\sqrt 3 \left( {c + a} \right)} \right).$
Tam giác $ABC$ vuông tại $B$ do đó $AC$ là đường kính của đường tròn $C.$
Do đó $AC \bot {d_1}$ $ \Rightarrow \overrightarrow {AC} .\overrightarrow {{u_1}} = 0$ $ \Leftrightarrow – 1.\left( {c – a} \right) + \sqrt 3 .\sqrt 3 \left( {a + c} \right) = 0$ $ \Leftrightarrow 2a + c = 0$ $(1).$
$AB \bot {d_2}$ $ \Rightarrow \overrightarrow {AB} .\overrightarrow {{u_2}} = 0$ $ \Leftrightarrow 1.\left( {b – a} \right) + 3\left( {a + b} \right) = 0$ $ \Leftrightarrow 2b + a = 0$ $(2).$
Mặt khác: ${S_{ABC}} = \frac{1}{2}d\left( {A;{d_2}} \right).BC$ $ \Rightarrow \frac{1}{2}.\frac{{\left| {2\sqrt 3 a} \right|}}{2}\sqrt {{{\left( {c – b} \right)}^2} + 3{{\left( {c – b} \right)}^2}} $ $ = \frac{{\sqrt 3 }}{2}$ $ \Leftrightarrow 2a\left| {c – b} \right| = 1$ $(3).$
Từ $(1)$, $(2)$ suy ra $2\left( {c – b} \right) = – 3a$ thế vào $(3)$ ta được:
$a\left| { – 3a} \right| = 1 \Leftrightarrow a = \frac{{\sqrt 3 }}{3}.$
Do đó $b = – \frac{{\sqrt 3 }}{6},c = – \frac{{2\sqrt 3 }}{3}$ $ \Rightarrow A\left( {\frac{{\sqrt 3 }}{3}; – 1} \right),C\left( { – \frac{{2\sqrt 3 }}{3}; – 2} \right).$
Suy ra $(C)$ nhận $I\left( { – \frac{{\sqrt 3 }}{6}; – \frac{3}{2}} \right)$ là trung điểm $AC$ làm tâm và bán kính là $R = \frac{{AC}}{2} = 1.$
Vậy phương trình đường tròn cần tìm là $\left( C \right):{\left( {x + \frac{{\sqrt 3 }}{6}} \right)^2} + {\left( {x + \frac{3}{2}} \right)^2} = 1.$
Phương pháp 1
+ Tìm toạ độ tâm $I\left( {a;b} \right)$ của đường tròn $(C).$
+ Tìm bán kính $R$ của đường tròn $(C).$
+ Viết phương trình của $(C)$ theo dạng ${(x – a)^2} + {(y – b)^2} = {R^2}.$
Phương pháp 2
Giả sử phương trình đường tròn $(C)$ là: ${x^2} + {y^2} – 2ax – 2by + c = 0{\rm{ }}$ (hoặc ${x^2} + {y^2} + 2ax + 2by + c = 0{\rm{ }}$).
+ Từ điều kiện của đề bài thành lập hệ phương trình với ba ẩn là $a, b, c.$
+ Giải hệ để tìm $a, b, c$ từ đó tìm được phương trình đường tròn $(C).$
Chú ý:
+ $A \in \left( C \right) \Leftrightarrow IA = R.$
+ $\left( C \right)$ tiếp xúc với đường thẳng $\Delta $ tại $A$ $ \Leftrightarrow IA = d\left( {I;\Delta } \right) = R.$
+ $\left( C \right)$ tiếp xúc với hai đường thẳng ${\Delta _1}$ và ${\Delta _2}$ $ \Leftrightarrow d\left( {I;{\Delta _1}} \right) = d\left( {I;{\Delta _2}} \right) = R.$
Ví dụ 1: Viết phương trình đường tròn trong mỗi trường hợp sau:
a. Có tâm $I\left( {1; – 5} \right)$ và đi qua $O\left( {0;0} \right).$
b. Nhận $AB$ làm đường kính với $A\left( {1;1} \right),B\left( {7;5} \right).$
c. Đi qua ba điểm: $M\left( { – 2;4} \right),N\left( {5;5} \right),P\left( {6; – 2} \right).$
a. Đường tròn cần tìm có bán kính là $OI = \sqrt {{1^2} + {5^2}} = \sqrt {26} $ nên có phương trình là ${\left( {x – 1} \right)^2} + {\left( {y + 5} \right)^2} = 26.$
b. Gọi $I$ là trung điểm của đoạn $AB$ suy ra $I\left( {4;3} \right).$
$AI = \sqrt {{{\left( {4 – 1} \right)}^2} + {{\left( {3 – 1} \right)}^2}} = \sqrt {13} .$
Đường tròn cần tìm có đường kính là $AB$ suy ra nó nhận $I\left( {4;3} \right)$ làm tâm và bán kính $R = AI = \sqrt {13} $ nên có phương trình là: ${\left( {x – 4} \right)^2} + {\left( {y – 3} \right)^2} = 13.$
c. Gọi phương trình đường tròn $(C)$ có dạng là: ${x^2} + {y^2} – 2ax – 2by + c = 0.$
Do đường tròn đi qua ba điểm $M,N,P$ nên ta có hệ phương trình:
$\left\{ \begin{array}{l}
4 + 16 + 4a – 8b + c = 0\\
25 + 25 – 10a – 10b + c = 0\\
36 + 4 – 12a + 4b + c = 0
\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}
a = 2\\
b = 1\\
c = – 20
\end{array} \right.$
Vậy phương trình đường tròn cần tìm là: ${x^2} + {y^2} – 4x – 2y – 20 = 0.$
Nhận xét: Đối với ý c ta có thể làm theo cách sau:
Gọi $I\left( {x;y} \right)$ và $R$ là tâm và bán kính đường tròn cần tìm.
Vì $IM = IN = IP$ $ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{I{M^2} = I{N^2}}\\
{I{M^2} = I{P^2}}
\end{array}} \right.$ nên ta có hệ:
${{{\left( {x + 2} \right)}^2} + {{\left( {y – 4} \right)}^2}}$ ${ = {{\left( {x – 5} \right)}^2} + {{\left( {y – 5} \right)}^2}}$
${{{\left( {x + 2} \right)}^2} + {{\left( {y – 4} \right)}^2}}$ ${ = {{\left( {x – 6} \right)}^2} + {{\left( {y + 2} \right)}^2}}$
$ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{x = 2}\\
{y = 1}
\end{array}} \right.$
Ví dụ 2: Viết phương trình đường tròn $(C)$ trong các trường hợp sau:
a. $(C)$ có tâm $I\left( { – 1;2} \right)$ và tiếp xúc với đường thẳng $ Δ: x – 2y + 7 = 0.$
b. $(C)$ đi qua $A\left( {2; – 1} \right)$ và tiếp xúc với hai trục toạ độ $Ox$ và $Oy.$
c. $(C)$ có tâm nằm trên đường thẳng $d:x – 6y – 10 = 0$ và tiếp xúc với hai đường thẳng có phương trình ${d_1}:3x + 4y + 5 = 0$ và ${d_2}:4x – 3y – 5 = 0.$
a. Bán kính đường tròn $(C)$ chính là khoảng cách từ $I$ tới đường thẳng $\Delta $ nên $R = d\left( {I;\Delta } \right)$ $ = \frac{{\left| { – 1 – 4 – 7} \right|}}{{\sqrt {1 + 4} }} = \frac{2}{{\sqrt 5 }}.$
Vậy phương trình đường tròn $(C)$ là ${\left( {x + 1} \right)^2} + {\left( {y – 2} \right)^2} = \frac{4}{5}.$
b. Vì điểm $A$ nằm ở góc phần tư thứ tư và đường tròn tiếp xúc với hai trục toạ độ nên tâm của đường tròn có dạng $I\left( {R; – R} \right)$ trong đó $R$ là bán kính đường tròn $(C).$
Ta có:
${R^2} = I{A^2}$ $ \Leftrightarrow {R^2} = {\left( {2 – R} \right)^2} + {\left( { – 1 + R} \right)^2}$ $ \Leftrightarrow {R^2} – 6R + 5 = 0$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{R = 1}\\
{R = 5}
\end{array}} \right.$
Vậy có hai đường tròn thoả mãn đầu bài là: ${\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} = 1$ và ${\left( {x – 5} \right)^2} + {\left( {y + 5} \right)^2} = 25.$
c. Vì đường tròn cần tìm có tâm $K$ nằm trên đường thẳng $d$ nên gọi $K\left( {6a + 10;a} \right).$
Mặt khác đường tròn tiếp xúc với ${d_1},{d_2}$ nên khoảng cách từ tâm $I$ đến hai đường thẳng này bằng nhau và bằng bán kính $R$ suy ra:
$\frac{{\left| {3(6a + 10) + 4a + 5} \right|}}{5}$ $ = \frac{{\left| {4(6a + 10) – 3a – 5} \right|}}{5}$ $\left| { \Leftrightarrow 22a + 35} \right| = \left| {21a + 35} \right|$ $ \Leftrightarrow \left[ \begin{array}{l}
a = 0\\
a = \frac{{ – 70}}{{43}}
\end{array} \right.$
+ Với $a = 0$ thì $K\left( {10;0} \right)$ và $R = 7$ suy ra $\left( C \right):{\left( {x – 10} \right)^2} + {y^2} = 49.$
+ Với $a = \frac{{ – 70}}{{43}}$ thì $K\left( {\frac{{10}}{{43}};\frac{{ – 70}}{{43}}} \right)$ và $R = \frac{7}{{43}}$ suy ra $\left( C \right):{\left( {x – \frac{{10}}{{43}}} \right)^2} + {\left( {y + \frac{{70}}{{43}}} \right)^2} = {\left( {\frac{7}{{43}}} \right)^2}.$
Vậy có hai đường tròn thỏa mãn có phương trình là $\left( C \right):{\left( {x – 10} \right)^2} + {y^2} = 49$ và $\left( C \right):{\left( {x – \frac{{10}}{{43}}} \right)^2} + {\left( {y + \frac{{70}}{{43}}} \right)^2} = {\left( {\frac{7}{{43}}} \right)^2}.$
Ví dụ 3: Cho hai điểm $A\left( {8;0} \right)$ và $B\left( {0;6} \right).$
a. Viết phương trình đường tròn ngoại tiếp tam giác $OAB.$
b. Viết phương trình đường tròn nội tiếp tam giác $OAB.$
a. Ta có tam giác $OAB$ vuông ở $O$ nên tâm $I$ của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền $AB$ suy ra $I\left( {4;3} \right)$ và bán kính $R = IA$ $ = \sqrt {{{\left( {8 – 4} \right)}^2} + {{\left( {0 – 3} \right)}^2}} = 5.$
Vậy phương trình đường tròn ngoại tiếp tam giác $OAB$ là:
${\left( {x – 4} \right)^2} + {\left( {y – 3} \right)^2} = 25.$
b. Ta có $OA = 8;OB = 6$, $AB = \sqrt {{8^2} + {6^2}} = 10.$
Mặt khác $\frac{1}{2}OA.OB = pr$ (vì cùng bằng diện tích tam giác $ABC$).
Suy ra $r = \frac{{OA.OB}}{{OA + OB + AB}} = 2.$
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ là $\left( {2;2} \right).$
Vậy phương trình đường tròn nội tiếp tam giác $OAB$ là: ${\left( {x – 2} \right)^2} + {\left( {y – 2} \right)^2} = 4.$
Ví dụ 4: Trong mặt phẳng tọa độ $Oxy$, cho hai đường thẳng ${d_1}:\sqrt 3 x + y = 0$ và ${d_2}:\sqrt 3 x – y = 0.$ Gọi $(C)$ là đường tròn tiếp xúc với ${d_1}$ tại $A$, cắt ${d_2}$ tại hai điểm $B, C$ sao cho tam giác $ABC$ vuông tại $B$. Viết phương trình của $(C)$, biết tam giác $ABC$ có diện tích bằng $\frac{{\sqrt 3 }}{2}$ và điểm $A$ có hoành độ dương.
Vì $A \in {d_1}$ $ \Rightarrow A\left( {a; – \sqrt 3 a} \right),a > 0;$ $B,C \in {d_2}$ $ \Rightarrow B\left( {b;\sqrt 3 b} \right),C\left( {c;\sqrt 3 c} \right).$
Suy ra $\overrightarrow {AB} \left( {b – a;\sqrt 3 \left( {a + b} \right)} \right),$ $\overrightarrow {AC} \left( {c – a;\sqrt 3 \left( {c + a} \right)} \right).$
Tam giác $ABC$ vuông tại $B$ do đó $AC$ là đường kính của đường tròn $C.$
Do đó $AC \bot {d_1}$ $ \Rightarrow \overrightarrow {AC} .\overrightarrow {{u_1}} = 0$ $ \Leftrightarrow – 1.\left( {c – a} \right) + \sqrt 3 .\sqrt 3 \left( {a + c} \right) = 0$ $ \Leftrightarrow 2a + c = 0$ $(1).$
$AB \bot {d_2}$ $ \Rightarrow \overrightarrow {AB} .\overrightarrow {{u_2}} = 0$ $ \Leftrightarrow 1.\left( {b – a} \right) + 3\left( {a + b} \right) = 0$ $ \Leftrightarrow 2b + a = 0$ $(2).$
Mặt khác: ${S_{ABC}} = \frac{1}{2}d\left( {A;{d_2}} \right).BC$ $ \Rightarrow \frac{1}{2}.\frac{{\left| {2\sqrt 3 a} \right|}}{2}\sqrt {{{\left( {c – b} \right)}^2} + 3{{\left( {c – b} \right)}^2}} $ $ = \frac{{\sqrt 3 }}{2}$ $ \Leftrightarrow 2a\left| {c – b} \right| = 1$ $(3).$
Từ $(1)$, $(2)$ suy ra $2\left( {c – b} \right) = – 3a$ thế vào $(3)$ ta được:
$a\left| { – 3a} \right| = 1 \Leftrightarrow a = \frac{{\sqrt 3 }}{3}.$
Do đó $b = – \frac{{\sqrt 3 }}{6},c = – \frac{{2\sqrt 3 }}{3}$ $ \Rightarrow A\left( {\frac{{\sqrt 3 }}{3}; – 1} \right),C\left( { – \frac{{2\sqrt 3 }}{3}; – 2} \right).$
Suy ra $(C)$ nhận $I\left( { – \frac{{\sqrt 3 }}{6}; – \frac{3}{2}} \right)$ là trung điểm $AC$ làm tâm và bán kính là $R = \frac{{AC}}{2} = 1.$
Vậy phương trình đường tròn cần tìm là $\left( C \right):{\left( {x + \frac{{\sqrt 3 }}{6}} \right)^2} + {\left( {x + \frac{3}{2}} \right)^2} = 1.$