Xác định hệ số lớn nhất trong khai triển nhị thức Niutơn.

  • Thread starter Thread starter moon
  • Ngày gửi Ngày gửi

moon

Thành viên cấp 2
Thành viên BQT
Phương pháp: Giả sử sau khi khai triển ta được đa thức $P(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_n}{x^n}.$
Xét các khả năng sau:
a. Nếu ${a_k} > 0$ $\forall k$ (trường hợp ${a_k} < 0$ $\forall k$ tương tự).
Ta xét bất phương trình ${a_k} \le {a_{k + 1}}$, thông thường giải ra được nghiệm $k \le {k_0} \in N$. Do $k$ nguyên nên $k = 0,1, \ldots ,{k_0}$. Từ đó suy ra bất phương trình ${a_k} > {a_{k + 1}}$ có nghiệm $k > {k_0}.$
• Nếu ${a_k} = {a_{k + 1}}$ $ \Leftrightarrow k = {k_0}$ thì ta có: ${a_0} < {a_1} < \ldots < {a_{{k_0} – 1}} < {a_{{k_0}}}$ $ = {a_{{k_0} + 1}} > {a_{{k_0} + 2}} > \ldots > {a_n}.$
Khi đó ta tìm được hai hệ số lớn nhất là ${a_{{k_0}}} = {a_{{k_0} + 1}}.$
• Nếu phương trình ${a_k} = {a_{k + 1}}$ vô nghiệm thì ta có: ${a_0} < {a_1} < \ldots < {a_{{k_0} – 1}} < {a_{{k_0}}}$ $ > {a_{{k_0} + 1}} > {a_{{k_0} + 2}} > \ldots > {a_n}.$
Khi đó ta có ${a_{{k_0}}}$ là hệ số lớn nhất trong khai triển của nhị thức.
b. Nếu ${a_{2k}} > 0$ $\forall k$ và ${a_{2k + 1}} < 0$ $\forall k$ (trường hợp ${a_{2k}} < 0$ $\forall k$ và ${a_{2k + 1}} > 0$ $\forall k$ tương tự) thì khi đó bài toán trở thành tìm số lớn nhất trong các số ${a_{2k}}$. Ta cũng xét bất phương trình ${a_{2k}} \le {a_{2k + 2}}$ rồi làm tương tự như phần 1.

Bài toán 1: Tìm hệ số có giá trị lớn nhất trong khai triển đa thức: $P(x) = {(2x + 1)^{13}}$ $ = {a_0}{x^{13}} + {a_1}{x^{12}} + \ldots + {a_{13}}.$
A. $8.$
B. $4536.$
C. $4528.$
D. $4520.$

Chọn A.
Ta có hệ số tổng quát sau khi khai triển nhị thức ${(2x + 1)^{13}}$ là ${a_n} = C_{13}^n{.2^{13 – n}}.$
Suy ra: ${a_{n – 1}} = C_{13}^{n – 1}{.2^{14 – n}}$, $(n = 1,2,3, \ldots ,13).$
Xét bất phương trình với ẩn số $n$ ta có ${a_{n – 1}} \le {a_n}$ $ \Leftrightarrow C_{13}^{n – 1}{.2^{14 – n}} \le C_n^{13}{.2^{13 – n}}$ $ \Leftrightarrow \frac{{2.13!}}{{(n – 1)!(14 – n)!}} \le \frac{{13!}}{{n!(13 – n)!}}$ $ \Leftrightarrow \frac{2}{{14 – n}} \le \frac{1}{n}$ $ \Leftrightarrow n \le \frac{{14}}{3} \notin N.$
Do đó bất đẳng thức ${a_{n – 1}} \le {a_n}$ đúng với $n \in \{ 1,2,3,4\} $ và dấu đẳng thức không xảy ra.
Nên bất đẳng thức ${a_{n – 1}} > {a_n}$ đúng với $n \in \{ 5,6,7,8,9,10,11,12,13\} .$
Ta được ${a_0} < {a_1} < {a_2} < {a_3} < {a_4}$ và ${a_4} > {a_5} > {a_6} > \ldots > {a_{13}}.$
Từ đây ta có hệ số có giá trị lớn nhất trong khai triển nhị thức là: ${a_4} = C_{13}^4{.2^9} = 366080.$

Bài toán 2: Trong khai triển biểu thức $F = {\left( {\sqrt 3 + \sqrt[3]{2}} \right)^9}$ số hạng nguyên có giá trị lớn nhất là?
A. $8.$
B. $4536.$
C. $4528.$
D. $4520.$

Chọn B.
Ta có số hạng tổng quát ${T_{k + 1}} = C_9^k{(\sqrt 3 )^{9 – k}}{(\sqrt[3]{2})^k}.$
Ta thấy hai bậc của căn thức là $2$ và $3$ là hai số nguyên tố, do đó để ${T_{k + 1}}$ là một số nguyên thì:
$\left\{ {\begin{array}{*{20}{l}}
{k \in N}\\
{0 \le k \le 9}\\
{(9 – k) \vdots 2}\\
{k \vdots 3}
\end{array}} \right.$ $ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{k = 3 \Rightarrow {T_4} = C_9^3{{(\sqrt 3 )}^6}{{(\sqrt[3]{2})}^3} = 4536}\\
{k = 9 \Rightarrow {T_{10}} = C_9^9{{(\sqrt 3 )}^0}{{(\sqrt[3]{2})}^9} = 8}
\end{array}} \right.$
Vậy trong khai triển có hai số hạng nguyên là ${T_4} = 4536$ và ${T_{10}} = 8.$
 
Back
Top