Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức
  1. Thủ thuật: Nếu muốn tìm lời giải một câu vật lý trên Google, bạn hãy gõ: tanggiap + câu hỏi.
    Dismiss Notice

Bài 3. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC

Thảo luận trong 'Bài 1. Các dạng toán liên quan đến số phức' bắt đầu bởi Doremon, 6/12/14.

  1. Tuấn Anh 689

    Tuấn Anh 689 Mới đăng kí

    Tham gia ngày:
    31/10/17
    Bài viết:
    4
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Cho số phức \(z = 2i.\) Hỏi điểm biểu diễn cho số phức z là điểm nào trong các điểm M, N, P, Q như hình bên?
    [​IMG]
    A. M
    B. N
    C. P
    D. Q
     
    1. Minh Toán
      Tập hợp các điểm biểu diễn số phức z là điểm M(0;2).
       
      Minh Toán, 9/12/17
  2. Tuấn Trần

    Tuấn Trần Mới đăng kí

    Tham gia ngày:
    29/8/17
    Bài viết:
    3
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Biết số phức \(z = a + bi\left( {a,b \in R} \right)\) thỏa mãn điều kiện \(\left| {z - 2 - 4i} \right| = \left| {z - 2i} \right|\) có mô đun nhỏ nhất. Tính \(M = {a^2} + {b^2}.\)
    A. M=10
    B. M=16
    C. M=26
    D. M=8
     
    1. Minh Toán
      \(\begin{array}{l}\left| {z - 2 - 4i} \right| = \left| {z - 2i} \right|\\ \Rightarrow \left| {a - 2 + \left( {b - 4} \right)i} \right| = \left| {a + \left( {b - 2} \right)i} \right|\\ \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 4} \right)^2} = {a^2} + {\left( {b - 2} \right)^2}\\ \Leftrightarrow a + b = 4\end{array}\)
      Ta có: \(\left| z \right| = \sqrt {{a^2} + {b^2}} = \sqrt {{a^2} + {{\left( {4 - a} \right)}^2}} = \sqrt {2{a^2} - 8a + 16} = \sqrt {2{{\left( {a - 2} \right)}^2} + 8} \ge 2\sqrt 2 \)
      Suy ra: \(Min\left( {\left| z \right|} \right) = Min\left( {\sqrt {{a^2} + {b^2}} } \right) = 2\sqrt 2 \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\end{array} \right. \Rightarrow M = 8\)
       
      Minh Toán, 9/12/17
  3. tuan.nt8686

    tuan.nt8686 Mới đăng kí

    Tham gia ngày:
    23/9/17
    Bài viết:
    5
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Gọi (H) là hình biểu diễn tập hợp các số phức z trong mặt phẳng tọa đọ Oxy để \(\left| {2z - \overline z } \right| \le 3\) số phức z có phần thực không âm. Tính diện tích hình (H).
    A. \(3\pi \)
    B. \(\frac{3}{2}\pi \)
    C. \(\frac{3}{4}\pi \)
    D. \(6\pi \)
     
    1. Minh Toán
      Đặt \(z = x + yi\left( {x \ge 0} \right);a,b \in R \Rightarrow \left| {2z - \overline z } \right| \le 3 \Leftrightarrow \left| {x + 3yi} \right| \le 3 \Leftrightarrow {x^2} + 9{y^2} \le 9\)
      \( \Leftrightarrow \frac{{{x^2}}}{9} + \frac{{{y^2}}}{1} \le 1\).
      Do hình (H) là nửa hình Elip có \(a = 3,b = 1\).
      Khi đó \(S = \frac{1}{2}{S_{elip}} = \frac{1}{2}.\left( {\pi ab} \right) = \frac{3}{2}\pi \)
       
      Minh Toán, 9/12/17
  4. tuan0986408740

    tuan0986408740 Mới đăng kí

    Tham gia ngày:
    7/6/17
    Bài viết:
    6
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Xác định tập hợp tất cả những điểm trong mặt phẳng tọa độ biểu diễn số phức z sao cho \({z^2} = {\left( {\overline z } \right)^2}.\)
    A. \(\left\{ {\left( {x;0} \right),x \in \mathbb{R}} \right\} \cup \left\{ {\left( {0;y} \right),y \in \mathbb{R}} \right\}\)
    B. \(\left\{ {\left( {x;y} \right),x + y = 0} \right\}\)
    C. \(\left\{ {\left( {0;y} \right),y \in \mathbb{R}} \right\}\)
    D. \(\left\{ {\left( {x;0} \right),x \in \mathbb{R}} \right\}\)
     
    1. Minh Toán
      Đặt \(z = x + yi;x,y \in \mathbb{R} \Rightarrow {\left( {x + yi} \right)^2} = {\left( {x - yi} \right)^2} \Leftrightarrow xy.i = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{y = 0}\end{array}} \right.\)
      Suy ra tập hợp các điểm trong mặt phẳng biểu diễn số phức z là \(\left\{ {\left( {x;0} \right),x \in \mathbb{R}} \right\} \cup \left\{ {\left( {0;y} \right),y \in \mathbb{R}} \right\}.\)
       
      Minh Toán, 9/12/17
  5. tuan16

    tuan16 Mới đăng kí

    Tham gia ngày:
    2/12/17
    Bài viết:
    1
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Gọi A là điểm biểu diễn của số phức \(z = 3 + 2i\) và điểm B là điểm biểu diễn số phức \(z' = 2 + 3i.\)Tìm mệnh đề đúng trong các mệnh đề sau:
    A. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O.
    B. Hai điểm A và B đối xứng với nhau qua trục tung.
    C. Hai điểm A và B đối xứng nhau qua trục hoành
    D. Hai điểm A và B đối xứng nhau qua đường thẳng \(y = x\)
     
    1. Minh Toán
      Ta có \(A\left( {3;2} \right)\) và \(B\left( {2;3} \right)\), ta có tọa độ hai điểm trên hình như sau:
      [​IMG]
      Dựa vào đồ thị ta thấy A và B đối xứng nhau qua đường thẳng y=x.
       
      Minh Toán, 9/12/17
  6. tuanken2810

    tuanken2810 Mới đăng kí

    Tham gia ngày:
    18/7/16
    Bài viết:
    1
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Xác định tập hợp các điểm biểu diễn số phức z trên mặt phẳng phức sao cho \(\frac{1}{{z - i}}\) là số thuần ảo.
    A. Trục tung, bỏ điểm \(\left( {0;1} \right)\)
    B. Trục hoành, bỏ điểm \(\left( { - 1;0} \right)\)
    C. Đường thẳng \(y = 1\), bỏ điểm \(\left( {0;1} \right)\)
    D. Đường thẳng \(x = - 1\), bỏ điểm \(\left( { - 1;0} \right)\)
     
    1. Minh Toán
      Vì bài toán liên quan đến biểu diễn số phức nên ta sẽ đặt \(z = x + iy\,\left( {x,y \in \mathbb{R}} \right)\)
      Khi đó \(\frac{1}{{z - i}} = \frac{1}{{x + i\left( {y - 1} \right)}} = \frac{{x - i\left( {y - 1} \right)}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}\)
      \( = \frac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} - \frac{{y - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}}i\)
      Khi đó để \(\frac{1}{{z - i}}\) là số thuần ảo thì: \(\left\{ \begin{array}{l}\frac{x}{{{x^2} + {{\left( {y - 1} \right)}^2}}} = 0\\\frac{{y - 1}}{{{x^2} + {{\left( {y - 1} \right)}^2}}} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y \ne 1\end{array} \right.\)
      Vậy A là phương án đúng.
       
      Minh Toán, 9/12/17
  7. Thạch24

    Thạch24 Mới đăng kí

    Tham gia ngày:
    24/11/17
    Bài viết:
    17
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Tìm số phức z có mô đun nhỏ nhất thỏa điều kiện \(\left( {z - 2} \right)\left( {\overline z + 2i - 1} \right)\) là số thực.
    A. \(z = \frac{8}{5} + \frac{4}{5}i.\)
    B. \(z = 1 + 2i.\)
    C. \(z = \frac{8}{5} - \frac{4}{5}i.\)
    D. \(z = 1 - 2i.\)
     
    1. Minh Toán
      Gọi \(z = x + yi.\)
      \(\begin{array}{l}\left( {z - 2} \right)\left( {\overline z + 2i - 1} \right) = \left( {x + yi - 2} \right)\left( {x - yi + 2i - 1} \right)\\ & & \,\,\,\,\,\, = \left( {x - 2} \right)\left( {x - 1} \right) - y\left( {2 - y} \right) + \left[ {\left( {x - 2} \right)\left( {2 - y} \right) + \left( {x - 1} \right)y} \right]i\end{array}\)
      \(\left( {z - 2} \right)\left( {\overline z + 2i - 1} \right)\) là số thực \( \Leftrightarrow \left( {x - 2} \right)\left( {2 - y} \right) + \left( {x - 1} \right)y = 0 \Leftrightarrow 2{\rm{x}} + y - 4 = 0 \Leftrightarrow y = 4 - 2{\rm{x}}\)
       
      Minh Toán, 9/12/17
    2. Minh Toán
      Khi đó: \(\left| z \right| = \sqrt {{x^2} + {y^2}} = \sqrt {{x^2} + {{\left( {4 - 2{\rm{x}}} \right)}^2}} = \sqrt {5{{\rm{x}}^2} - 16{\rm{x}} + 16} = \sqrt {5{{\left( {x - \frac{8}{5}} \right)}^2} + \frac{{16}}{5}} \ge \frac{{4\sqrt 5 }}{5}.\)
      \({\left| z \right|_{\min }} = \frac{{4\sqrt 5 }}{5} \Leftrightarrow x = \frac{8}{5} \Rightarrow y = \frac{4}{5} \Rightarrow z = \frac{8}{5} + \frac{4}{5}i.\)
       
      Minh Toán, 9/12/17
  8. thackhoitramhuong

    thackhoitramhuong Mới đăng kí

    Tham gia ngày:
    1/11/17
    Bài viết:
    22
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Cho số phức z có môđun \(\left| z \right| = 1\,\). Giá trị lớn nhất của biểu thức \(P = \left| {1 + z} \right| + 3\left| {1 - z} \right|\) là
    A. \(3\sqrt {10} \,\)
    B. \(2\sqrt {10} \)
    C. 6
    D. \(4\sqrt 2 \)
     
    1. Minh Toán
      Đặt \(z = x + yi\) ta có: \({x^2} + {y^2} = 1\)
      Khi đó \(P = \sqrt {{{\left( {x + 1} \right)}^2} + {y^2}} + 3\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} = \sqrt {{x^2} + {y^2} + 2x + 1} + 3\sqrt {{x^2} + {y^2} - 2x + 1} \)
      \( = \sqrt {2x + 2} + 3\sqrt {2 - 2x} \)
      Xét \(f\left( x \right) = \sqrt {2x + 2} + 3\sqrt {2 - 2x} \,\,\,\left( {x \in \left[ { - 1;1} \right]} \right)\)có \(f'\left( x \right) = \frac{1}{{\sqrt {2x + 2} }} - \frac{3}{{\sqrt {2 - 2x} }} = 0 \Leftrightarrow x = \frac{{ - 4}}{5}\)
      Khi đó \({P_{\max }} = f\left( { - \frac{4}{5}} \right) = 2\sqrt {10} .\)
       
      Minh Toán, 9/12/17
  9. khaminh1002

    khaminh1002 Mới đăng kí

    Tham gia ngày:
    14/10/17
    Bài viết:
    11
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Cho số phức z thỏa mãn z không phải là số thực và \({\rm{w}} = \frac{z}{{2 + {z^2}}}\) là số thực. Giá trị lớn nhất của biểu thức \(M = \left| {z + 1 - i} \right|\) là:
    A. 2
    B. \(2\sqrt 2 .\)
    C. \(\sqrt 2 .\)
    D. 8
     
    1. Minh Toán
      Ta có w là số thực nên \(\frac{1}{{\rm{w}}} = z + \frac{2}{z}\) là số thực.
      Đặt \(z = a + bi\,(a;b \in \mathbb{R})\)
      Mà z không phải là số thực nên \(b \ne 0.\)
      \( \Rightarrow \frac{1}{{\rm{w}}} = a + bi + \frac{{2\left( {a - bi} \right)}}{{{a^2} + {b^2}}}\) là số thực khi \(b - \frac{{2b}}{{{a^2} + {b^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}b = 0\,\,(loai)\\{a^2} + {b^2} = 2 \Rightarrow \left| z \right| = \sqrt 2 \end{array} \right.\)
      Tập hợp các điểm A(x,y) điểm biểu diễn z là đường tròn \(O\left( {0;0} \right);R = \sqrt 2 .\)
      Ta có: \(M = \left| {z + 1 - i} \right| = \left| {(x + 1) + (y - 1)i} \right| = \sqrt {{{(x + 1)}^2} + {{(y - 1)}^2}} = AB\) với B(-1;1).
      [​IMG]
      M đạt giá trị lớn nhất khi đoạn thẳng AB đạt giá trị lớn nhất.
      Ta thấy: \(\left\{ \begin{array}{l}A(x;y) \in \left( C \right)\\B( - 1;1) \in \left( C \right)\end{array} \right.\) nên \(A{B_{\max }} = 2R = 2\sqrt 2 .\)
      Vậy \({M_{\max }} = 2\sqrt 2 .\)
       
      Minh Toán, 9/12/17
  10. toan2kbv

    toan2kbv Mới đăng kí

    Tham gia ngày:
    29/10/17
    Bài viết:
    19
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Cho số phức z thỏa mãn \(\left| {z - i} \right| = \sqrt 2 \). Tìm giá trị lớn nhất của \(M = \left| {z - 1} \right| + \left| {z + 1 - 2i} \right|.\)
    A. 6
    B. 4
    C. \(8\sqrt 2 \)
    D. \(4\sqrt 2 \)
     
    1. Minh Toán
      Đặt \(z = x + yi\left( {x,y \in R} \right)\), khi đó \(\left| {z - i} \right| = \sqrt 2 \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 2 \Leftrightarrow {x^2} + {y^2} = 2y + 1\)
      Ta có \(M = \left| {z - 1} \right| + \left| {z + 1 - 2i} \right| = \sqrt {{{\left( {x + 1} \right)}^2} + {y^2}} + \sqrt {{{\left( {x + 1} \right)}^2} + {{\left( {y - 2} \right)}^2}} \)
      \( = \sqrt {{x^2} + {y^2} - 2x + 1} + \sqrt {{x^2} + {y^2} + 2x - 4y + 5} = \sqrt {2 + 2y - 2x} + \sqrt {6 + 2x - 2y} \)
      Theo bất đẳng thức Bunhiacopxki, ta có:
      \({\left( {\sqrt {2 + 2y - 2x} + \sqrt {6 + 2x - 2y} } \right)^2} \le \left( {{1^2} + {1^2}} \right)\left( {2 + 2y - 2x + 6 + 2x - 2y} \right) = 16\)
      Do đó \(M = \sqrt {2 + 2y - 2x} + \sqrt {6 + 2x - 2y} \le \sqrt {16} = 4 \Rightarrow {M_{\max }} = 4.\)
       
      Minh Toán, 9/12/17
  11. Bắc

    Bắc Mới đăng kí

    Tham gia ngày:
    21/6/17
    Bài viết:
    10
    Đã được thích:
    1
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Trong các số phức z thỏa mãn điều kiện \(\left| {z - 2 - 4i} \right| = \left| {z - 2i} \right|\). Tìm số phức z có mô đun bé nhất.
    A. z = 2 + 2i
    B. z = 2 + i
    C. z = 1 + 3i
    D. z = 3 + i
     
    1. Minh Toán
      Đặt \(z = a + bi;\,\,a,b \in \mathbb{R}.\) Ta có:
      \(\left| {a - 2 + \left( {b - 4} \right)i} \right| = \left| {a + \left( {b - 2} \right)i} \right| \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 4} \right)^2} = {a^2} + {\left( {b - 2} \right)^2} \Leftrightarrow a + b = 4 \Leftrightarrow b = - {\rm{a}} + 4\)
      Ta có: \(\left| z \right| = \sqrt {{a^2} + {b^2}} = \sqrt {{a^2} + {{\left( { - a + 4} \right)}^2}} = \sqrt {2{{\rm{a}}^2} - 8{\rm{a}} + 16} = \sqrt {2{{\left( {a - 2} \right)}^2} + 8} \ge 2\sqrt 2 \Leftrightarrow \left| z \right| \ge 2\sqrt 2 .\)
      Dấu bằng xảy ra khi và chỉ khi \(a - 2 = 0 \Leftrightarrow a = 2 \Rightarrow b = 2 \Rightarrow z = 2 + 2i.\)
       
      Minh Toán, 9/12/17
  12. Vân Anh2k

    Vân Anh2k Mới đăng kí

    Tham gia ngày:
    6/10/17
    Bài viết:
    37
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nữ
    Cho số phức z có môđun là 3, biết tập hợp các điểm biểu diễn số phức \({\rm{w}} = 3 - 2i + \left( {2 - i} \right)z\) là một đường tròn thì có bán kính bao nhiêu?
    A. \(R = 3\sqrt 2 \)
    B. \(R = 3\sqrt 5 \)
    C. \(R = 3\sqrt 3 \)
    D. \(R = 3\sqrt 7 \)
     
    1. Minh Toán
      \({\rm{w}} = x + yi \Rightarrow x + yi = 3 - 2i + \left( {2 - i} \right)z \Leftrightarrow \frac{{x + yi - 3 + 2i}}{{2 - i}} = z\)
      \( \Rightarrow \frac{{2x + 2yi - 6 + 4i + xi - y - 3i - 2}}{5} = z \Leftrightarrow \frac{{i\left( {x + 2y + 1} \right) + 2x - y - 8}}{5} = z\)
      \( \Rightarrow {\left( {x + 2y + 1} \right)^2} + {\left( {2x - y - 8} \right)^2} = 25.9 = 5{x^2} + 5{y^2} - 30x + 20y + 65\)
      \(\begin{array}{l} \Leftrightarrow 5.9 = {x^2} + {y^2} - 6x + 4y + 13 = {\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2}\\ \Rightarrow R = 3\sqrt 5 .\end{array}\)
       
      Minh Toán, 9/12/17
  13. thancuc1

    thancuc1 Mới đăng kí

    Tham gia ngày:
    13/7/17
    Bài viết:
    2
    Đã được thích:
    0
    Điểm thành tích:
    0
    Giới tính:
    Nam
    Cho các số phức z thoả mãn |z-i|=2. Biết rằng tập hợp các điểm biểu diễn các số phức w=(2+i)z là một đường tròn. Tìm toạ độ tâm I của đường tròn đó.
    A. I(1;-2)
    B. I(1;1)
    C. I(0;1)
    D. I(-1;2)
     
    1. Minh Toán
      Đặt \({\rm{w}} = x + iy\,\,\,(x,y\, \in \mathbb{R}).\)
      \(\begin{array}{l}{\rm{w}} = (2 + i)z \Leftrightarrow x + iy = (2 + i)z\\ \Leftrightarrow z = \frac{{x + iy}}{{2 + i}} = \frac{{(x + iy)(2 - i)}}{{(2 + i)(2 - i)}}.\\ \Leftrightarrow z = \frac{{2x + y + ( - x + 2y)i}}{5}\\ \Leftrightarrow z = \frac{{2x + y}}{5} + \frac{{ - x + 2y}}{5}i.\end{array}\)
      \(\begin{array}{l}|z - i| = 2 \Leftrightarrow \left| {\frac{{2x + y}}{5} + \frac{{ - x + 2y}}{5}i - i} \right| = 2\\ \Leftrightarrow \left| {\frac{{2x + y}}{5} + \frac{{ - x + 2y - 5}}{5}i} \right| = 2\\ \Leftrightarrow \sqrt {{{\left( {\frac{{2x + y}}{5}} \right)}^2} + {{\left( {\frac{{ - x + 2y - 5}}{5}} \right)}^2}} = 2\\ \Leftrightarrow 4{x^2} + {y^2} + 4xy + {x^2} + 4{y^2} + 25 - 4xy + 10x - 20y = 100\\ \Leftrightarrow {(x + 1)^2} + {(y - 2)^2} = 20.\end{array}\)
      Vậy tập hợp điểm biểu diễn các số phức w là một đường tròn tâm I(-1;2)
       
      Minh Toán, 9/12/17

Chia sẻ trang này